On RAC drawings of graphs with one bend per edge

A k-bend right-angle-crossing drawing (or k-bend RAC drawing, for short) of a graph is a polyline drawing where each edge has at most k bends and the angles formed at the crossing points of the edges are \(90^\circ \). Accordingly, a graph that admits a \(k\)-bend RAC drawing is referred to as k-bend right-angle-crossing graph (or k-bend RAC, for short). In this paper, we continue the study of the maximum edge-density of \(1\)-bend RAC graphs. We show that an n-vertex \(1\)-bend RAC graph cannot have more than \(5.5n-O(1)\) edges. We also demonstrate that there exist infinitely many n-vertex \(1\)-bend RAC graphs with exactly \(5n-O(1)\) edges. Our results improve both the previously known best upper bound of \(6.5n-O(1)\) edges and the corresponding lower bound of \(4.5n-O(\sqrt{n})\) edges by Arikushi et al. (Comput. Geom. 45(4), 169–177 (2012)).

[1]  Walter Didimo,et al.  Recognizing and drawing IC-planar graphs , 2015, Theor. Comput. Sci..

[2]  Walter Didimo,et al.  A Survey on Graph Drawing Beyond Planarity , 2018, ACM Comput. Surv..

[3]  Henry Förster,et al.  On Compact RAC Drawings , 2020, ESA.

[4]  Giuseppe Liotta,et al.  An annotated bibliography on 1-planarity , 2017, Comput. Sci. Rev..

[5]  Emilio Di Giacomo,et al.  Area, Curve Complexity, and Crossing Resolution of Non-Planar Graph Drawings , 2010, Theory of Computing Systems.

[6]  Eyal Ackerman,et al.  On topological graphs with at most four crossings per edge , 2015, Comput. Geom..

[7]  Takeshi Tokuyama,et al.  Algoritihmcs for Beyond Planar Graphs (NII Shonan Meeting 2016-17) , 2016, NII Shonan Meet. Rep..

[8]  David A. Carrington,et al.  Empirical Evaluation of Aesthetics-based Graph Layout , 2002, Empirical Software Engineering.

[9]  Michael Kaufmann,et al.  The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..

[10]  Hiroshi Nagamochi,et al.  A linear-time algorithm for testing full outer-2-planarity , 2019, Discret. Appl. Math..

[11]  Gábor Tardos,et al.  On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.

[12]  Michael A. Bekos,et al.  On RAC drawings of 1-planar graphs , 2017, Theor. Comput. Sci..

[13]  János Pach,et al.  The Number of Edges in k-Quasi-planar Graphs , 2011, SIAM J. Discret. Math..

[14]  Walter Didimo,et al.  Drawing Graphs with Right Angle Crossings , 2009, WADS.

[15]  Sang Won Bae,et al.  Gap-planar graphs , 2018, Theor. Comput. Sci..

[16]  Michael A. Bekos,et al.  On Optimal 2- and 3-Planar Graphs , 2017, Symposium on Computational Geometry.

[17]  Weidong Huang,et al.  Using eye tracking to investigate graph layout effects , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[18]  Fabrizio Montecchiani,et al.  Drawing Subcubic 1-Planar Graphs with Few Bends, Few Slopes, and Large Angles , 2018, GD.

[19]  Michael A. Bekos,et al.  The Straight-Line RAC Drawing Problem is NP-Hard , 2010, J. Graph Algorithms Appl..

[20]  Otfried Cheong,et al.  On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.

[21]  Hiroshi Nagamochi,et al.  Testing Full Outer-2-planarity in Linear Time , 2015, WG.

[22]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[23]  Michael A. Bekos,et al.  Beyond Planarity: Turán-Type Results for Non-Planar Bipartite Graphs , 2018, International Symposium on Algorithms and Computation.

[24]  Balázs Keszegh,et al.  On the Size of Planarly Connected Crossing Graphs , 2015, GD.

[25]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[26]  János Pach,et al.  Improving the Crossing Lemma by Finding More Crossings in Sparse Graphs , 2006, Discret. Comput. Geom..

[27]  Giuseppe Liotta,et al.  Right angle crossing graphs and 1-planarity , 2013, Discret. Appl. Math..

[28]  Michael A. Bekos,et al.  On the Density of Non-simple 3-Planar Graphs , 2016, Graph Drawing.

[29]  Weidong Huang,et al.  Larger crossing angles make graphs easier to read , 2014, J. Vis. Lang. Comput..

[30]  Michael Kaufmann,et al.  Journal of Graph Algorithms and Applications on the Perspectives Opened by Right Angle Crossing Drawings , 2022 .

[31]  Giuseppe Liotta,et al.  Graph drawing beyond planarity: some results and open problems , 2014, ICTCS.

[32]  Michael Kaufmann,et al.  Beyond-Planar Graphs: Algorithmics and Combinatorics (Dagstuhl Seminar 16452) , 2016, Dagstuhl Reports.

[33]  Christian Bachmaier,et al.  NIC-planar graphs , 2017, Discret. Appl. Math..

[34]  Eyal Ackerman On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2009, Discret. Comput. Geom..

[35]  Walter Didimo,et al.  A characterization of complete bipartite RAC graphs , 2010, Inf. Process. Lett..

[36]  Emilio Di Giacomo,et al.  2-Layer Right Angle Crossing Drawings , 2011, Algorithmica.

[37]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[38]  Helen C. Purchase,et al.  Effective information visualisation: a study of graph drawing aesthetics and algorithms , 2000, Interact. Comput..

[39]  Csaba D. Tóth,et al.  Graphs that admit right angle crossing drawings , 2010, Comput. Geom..