On RAC drawings of graphs with one bend per edge
暂无分享,去创建一个
[1] Walter Didimo,et al. Recognizing and drawing IC-planar graphs , 2015, Theor. Comput. Sci..
[2] Walter Didimo,et al. A Survey on Graph Drawing Beyond Planarity , 2018, ACM Comput. Surv..
[3] Henry Förster,et al. On Compact RAC Drawings , 2020, ESA.
[4] Giuseppe Liotta,et al. An annotated bibliography on 1-planarity , 2017, Comput. Sci. Rev..
[5] Emilio Di Giacomo,et al. Area, Curve Complexity, and Crossing Resolution of Non-Planar Graph Drawings , 2010, Theory of Computing Systems.
[6] Eyal Ackerman,et al. On topological graphs with at most four crossings per edge , 2015, Comput. Geom..
[7] Takeshi Tokuyama,et al. Algoritihmcs for Beyond Planar Graphs (NII Shonan Meeting 2016-17) , 2016, NII Shonan Meet. Rep..
[8] David A. Carrington,et al. Empirical Evaluation of Aesthetics-based Graph Layout , 2002, Empirical Software Engineering.
[9] Michael Kaufmann,et al. The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..
[10] Hiroshi Nagamochi,et al. A linear-time algorithm for testing full outer-2-planarity , 2019, Discret. Appl. Math..
[11] Gábor Tardos,et al. On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.
[12] Michael A. Bekos,et al. On RAC drawings of 1-planar graphs , 2017, Theor. Comput. Sci..
[13] János Pach,et al. The Number of Edges in k-Quasi-planar Graphs , 2011, SIAM J. Discret. Math..
[14] Walter Didimo,et al. Drawing Graphs with Right Angle Crossings , 2009, WADS.
[15] Sang Won Bae,et al. Gap-planar graphs , 2018, Theor. Comput. Sci..
[16] Michael A. Bekos,et al. On Optimal 2- and 3-Planar Graphs , 2017, Symposium on Computational Geometry.
[17] Weidong Huang,et al. Using eye tracking to investigate graph layout effects , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.
[18] Fabrizio Montecchiani,et al. Drawing Subcubic 1-Planar Graphs with Few Bends, Few Slopes, and Large Angles , 2018, GD.
[19] Michael A. Bekos,et al. The Straight-Line RAC Drawing Problem is NP-Hard , 2010, J. Graph Algorithms Appl..
[20] Otfried Cheong,et al. On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.
[21] Hiroshi Nagamochi,et al. Testing Full Outer-2-planarity in Linear Time , 2015, WG.
[22] Micha Sharir,et al. Quasi-planar graphs have a linear number of edges , 1995, GD.
[23] Michael A. Bekos,et al. Beyond Planarity: Turán-Type Results for Non-Planar Bipartite Graphs , 2018, International Symposium on Algorithms and Computation.
[24] Balázs Keszegh,et al. On the Size of Planarly Connected Crossing Graphs , 2015, GD.
[25] G. Ringel. Ein Sechsfarbenproblem auf der Kugel , 1965 .
[26] János Pach,et al. Improving the Crossing Lemma by Finding More Crossings in Sparse Graphs , 2006, Discret. Comput. Geom..
[27] Giuseppe Liotta,et al. Right angle crossing graphs and 1-planarity , 2013, Discret. Appl. Math..
[28] Michael A. Bekos,et al. On the Density of Non-simple 3-Planar Graphs , 2016, Graph Drawing.
[29] Weidong Huang,et al. Larger crossing angles make graphs easier to read , 2014, J. Vis. Lang. Comput..
[30] Michael Kaufmann,et al. Journal of Graph Algorithms and Applications on the Perspectives Opened by Right Angle Crossing Drawings , 2022 .
[31] Giuseppe Liotta,et al. Graph drawing beyond planarity: some results and open problems , 2014, ICTCS.
[32] Michael Kaufmann,et al. Beyond-Planar Graphs: Algorithmics and Combinatorics (Dagstuhl Seminar 16452) , 2016, Dagstuhl Reports.
[33] Christian Bachmaier,et al. NIC-planar graphs , 2017, Discret. Appl. Math..
[34] Eyal Ackerman. On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2009, Discret. Comput. Geom..
[35] Walter Didimo,et al. A characterization of complete bipartite RAC graphs , 2010, Inf. Process. Lett..
[36] Emilio Di Giacomo,et al. 2-Layer Right Angle Crossing Drawings , 2011, Algorithmica.
[37] János Pach,et al. Graphs drawn with few crossings per edge , 1997, Comb..
[38] Helen C. Purchase,et al. Effective information visualisation: a study of graph drawing aesthetics and algorithms , 2000, Interact. Comput..
[39] Csaba D. Tóth,et al. Graphs that admit right angle crossing drawings , 2010, Comput. Geom..