Trends in low-power RAM circuit technologies

Trends in low-power circuit technologies of CMOS RAM chips are reviewed in terms of three key issues: charging capacitance, operating voltage, and dc current. The discussion includes a general description of power sources in a RAM chip, and covers both DRAMs and SRAMs. In DRAMs, successive circuit advancements have produced a power reduction equivalent to two to three orders of magnitude over the last decade for a fixed memory capacity chip. Coupled with the low-power advantage of CMOS circuits, two technologies have been the major contributors to power reduction: lower charging capacitance due to partial activation of multi-divided arrays that use multi-divisions of data and word lines; and lower operating voltage resulting from external power supply reduction, half-V/sub DD/ precharging and on-chip voltage down converting scheme. In SRAMs, partial activation of a multi-divided word line drastically reduces the dc current from the data-line load to the selected cell. In addition to advances in the sense amplifier circuit, an auto power down scheme that uses address transition detection for word driver and column circuitry further reduces the dc current. It is also shown that to design ultralow voltage DRAMs and SRAMs, the application of subthreshold current reduction circuits (such as source-gate back biasing) to cell and iterative circuit blocks will be indispensable in the future. >

[1]  Kiyoo Itoh Reviews and Prospects of Deep Sub-Micron DRAM Technology , 1991 .

[2]  Masashi Horiguchi,et al.  The impact of data-line interference noise on DRAM scaling , 1988 .

[3]  Masashi Horiguchi,et al.  Switched-source-impedance CMOS circuit for low standby subthreshold current giga-scale LSI's , 1993 .

[4]  Oh-Hyun Kwon,et al.  A 35 ns 64 Mb DRAM using on-chip boosted power supply , 1992, 1992 Symposium on VLSI Circuits Digest of Technical Papers.

[5]  S. Kawanago,et al.  3-dimensional stacked capacitor cell for 16 M and 64 M DRAMS , 1988, Technical Digest., International Electron Devices Meeting.

[6]  Y. Nakagome,et al.  Sub-1-/spl mu/A dynamic reference voltage generator for battery-operated DRAMs , 1993, Symposium 1993 on VLSI Circuits.

[7]  H. H. Chao,et al.  Half-V/SUB DD/ bit-line sensing scheme in CMOS DRAMs , 1984 .

[8]  Masashi Horiguchi,et al.  256 Mb DRAM technologies for file applications , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[9]  Kazuyasu Fujishima,et al.  Automatic Voltage-swing Reduction (avr) Scheme For Ultra Low Power Drams , 1994, Proceedings of 1994 IEEE Symposium on VLSI Circuits.

[10]  K. Ishibashi,et al.  A 6-ns 4-mb Cmos Sram With Offset-voltage-insensitive Current Sense Amplifiers , 1994, Proceedings of 1994 IEEE Symposium on VLSI Circuits.

[11]  Toshio Takeshima,et al.  A 30-ns 256-Mb DRAM with a multidivided array structure , 1993 .

[12]  T. Masuhara,et al.  A 20 ns 64K CMOS static RAM , 1984, IEEE Journal of Solid-State Circuits.

[13]  K. Itoh Trends in megabit DRAM circuit design , 1990 .

[14]  K. Uchibori,et al.  A 256K CMOS SRAM with variable-impedance loads , 1985, 1985 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[15]  M. Aoki,et al.  Subthreshold current reduction for decoded-driver by self-reverse biasing (DRAMs) , 1993 .

[16]  K. Sasaki High-speed, low-voltage design for high-performance static RAMs , 1993, 1993 International Symposium on VLSI Technology, Systems, and Applications Proceedings of Technical Papers.

[17]  Shih-Wei Sun,et al.  Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation , 1994, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '94.

[18]  Masahide Takada,et al.  Reviews and Prospects of SRAM Technology , 1991 .

[19]  K. Itoh,et al.  An experimental 1Mb DRAM with on-chip voltage limiter , 1984, 1984 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[20]  T. Kure,et al.  A charge recycle refresh for Gb-scale DRAMs in file applications , 1993, Symposium 1993 on VLSI Circuits.

[21]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[22]  Tetsuya Iizuka,et al.  Self-Aligned Refresh Scheme for VLSI Intelligent Dynamic RAMs , 1986, 1986 Symposium on VLSI Technology. Digest of Technical Papers.

[23]  Koichiro Ishibashi,et al.  A 6-ns 4-Mb CMOS SRAM with offset-voltage-insensitive current sense amplifiers , 1994 .

[24]  Kiyoo Itoh,et al.  Power Reduction Techniques in Megabit DRAM's , 1986 .

[25]  Tanaka Haruhiko,et al.  Sub-1-/spl mu/A dynamic reference voltage generator for battery-operated DRAMs , 1994 .

[26]  Masayoshi Sasaki,et al.  A 9 ns 16 Mb CMOS SRAM with offset reduced current sense amplifier , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[27]  H. Hidaka,et al.  A Twisted Bit Line Technique for Multi-Mb Drams , 1988, 1988 IEEE International Solid-State Circuits Conference, 1988 ISSCC. Digest of Technical Papers.

[28]  R. I. Kung,et al.  Two-13 ns-64K CMOS SRAM's with very low active power and improved asynchronous circuit techniques , 1986 .

[29]  O. Minato,et al.  A 36μa 4MB PSRAM with quadruple array operation , 1989, Symposium 1989 on VLSI Circuits.

[30]  Masashi Horiguchi,et al.  Dual-regulator dual-decoding-trimmer DRAM voltage limiter for burn-in test , 1991 .

[31]  Masashi Horiguchi,et al.  A charge recycle refresh for Gb-scale DRAM's in file applications , 1994 .

[32]  Hideto Hidaka,et al.  A 34 ns 256 Mb DRAM with boosted sense-ground scheme , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[33]  Goro Kitsukawa,et al.  A 23-ns 1-Mb BiCMOS DRAM , 1990 .

[34]  Katsuro Sasaki,et al.  A voltage down converter with submicroampere standby current for low-power static RAMs , 1992 .

[35]  K. Fujishima,et al.  A 256K dynamic RAM with page-nibble mode , 1983, IEEE Journal of Solid-State Circuits.

[36]  Takeshi Sakata,et al.  Two-Dimensional Power-Line Selection Scheme for Low Subthreshold-Current Multi-Gigabit DRAMs , 1993, ESSCIRC '93: Nineteenth European Solid-State Circuits Conference.

[37]  Toshiaki Yamanaka,et al.  A 16-Mb CMOS SRAM with a 2.3- mu m/sup 2/ single-bit-line memory cell , 1993 .

[38]  Soo-In Cho,et al.  Battery Operated 16m Dram With Post Package Programmable And Variable Self Refresh , 1994, Proceedings of 1994 IEEE Symposium on VLSI Circuits.

[39]  Toshiaki Yamanaka,et al.  A 1-V TFT-load SRAM using a two-step word-voltage method , 1992 .

[40]  Takeshi Sakata,et al.  Subthreshold-current reduction circuits for multi-gigabit DRAM's , 1994 .

[41]  Eiji Takeda,et al.  An experimental 1.5-V 64-Mb DRAM , 1991 .

[42]  E. Seevinck A current sense-amplifier for fast CMOS SRAMs , 1990, Digest of Technical Papers., 1990 Symposium on VLSI Circuits.

[43]  N.C.C. Lu,et al.  Advanced cell structures for dynamic RAMs , 1989, IEEE Circuits and Devices Magazine.

[44]  K. Ohishi,et al.  A 288K CMOS pseudostatic RAM , 1984, IEEE Journal of Solid-State Circuits.

[45]  H. Shinohara,et al.  A 64Kb full CMOS RAM with divided word line structure , 1983, 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[46]  Koichiro Ishibashi,et al.  A 7-ns 140-mW 1-Mb CMOS SRAM with current sense amplifier , 1992 .

[47]  D. Burnett,et al.  Implications of fundamental threshold voltage variations for high-density SRAM and logic circuits , 1994, Proceedings of 1994 VLSI Technology Symposium.

[48]  K.C. Hardee,et al.  A fault-tolerant 30 ns/375 mW 16Kx1 NMOS static RAM , 1981, IEEE Journal of Solid-State Circuits.

[49]  Soo-In Cho,et al.  An experimental 16-Mbit DRAM with reduced peak-current noise , 1989 .

[50]  H. Kawamoto,et al.  A 20ns static column 1Mb DRAM in CMOS technology , 1985, 1985 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[51]  M. Kakumu,et al.  High-speed and low-standby-power circuit design of 1 to 5 V operating 1 Mb full CMOS SRAM , 1993, Symposium 1993 on VLSI Circuits.

[52]  Tsuyoshi Horikawa,et al.  Ba 0.75 Sr 0.25 )TiO 3 Films for 256 Mbit DRAM , 1994 .

[53]  N.C.C. Lu,et al.  A new on-chip voltage regulator for high density CMOS DRAMs , 1992, 1992 Symposium on VLSI Circuits Digest of Technical Papers.

[54]  Masayoshi Sasaki,et al.  A 25 ns 4 Mb CMOS SRAM with dynamic bit line loads , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[55]  Kiyoo Itoh,et al.  Reviews and Prospects of DRAM Technology , 1991 .

[56]  K. Itoh,et al.  Subthreshold-current reduction circuits for multi-gigabit DRAM's , 1993, Symposium 1993 on VLSI Circuits.

[57]  M. Ukita,et al.  A 21-mW 4-Mb CMOS SRAM for battery operation , 1991 .

[58]  John A. Gabric,et al.  A 256K SRAM with on-chip power supply conversion , 1987, 1987 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[59]  Y. Yasu,et al.  A 4-Mb pseudo SRAM operating at 2.6+or-1 V with 3- mu A data retention current , 1991 .