KFCE: A dictionary generation algorithm for sparse representation

Sparse representation (SR) for signals over an overcomplete dictionary fascinates a lot of researchers in the past decade. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. This paper addresses the problem of dictionary generation in SR. Recent studies show that this problem is equivalent to the problem of codebook estimation in vector quantization (VQ). A kernel fuzzy codebook estimation (KFCE) algorithm is proposed in this paper. The principle of the KFCE algorithm is to integrate the distance kernel trick with the fuzzy clustering algorithm to generate dictionary for SR. Experimental results on real image data show that the KFCE is fit for generating dictionary for SR.

[1]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[2]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[3]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[4]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[5]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[6]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[7]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[8]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[9]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[10]  Vahid Tarokh,et al.  Performance of Sparse Representation Algorithms Using Randomly Generated Frames , 2007, IEEE Signal Processing Letters.

[11]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[13]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[14]  Erik Hjelmås,et al.  Face Detection: A Survey , 2001, Comput. Vis. Image Underst..

[15]  Kjersti Engan,et al.  Multi-frame compression: theory and design , 2000, Signal Process..

[16]  Rémi Gribonval,et al.  Learning unions of orthonormal bases with thresholded singular value decomposition , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[17]  Mark A. Girolami,et al.  Mercer kernel-based clustering in feature space , 2002, IEEE Trans. Neural Networks.

[18]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[19]  Nikolaos Mitianoudis,et al.  Overcomplete source separation using Laplacian mixture models , 2005, IEEE Signal Processing Letters.