A Cooperative Search Method for the k-Coloring Problem

In this paper, a cooperative search method, based on a multi-agent structure is developed to deal with the k-coloring problem. Three agents coordinate using an adaptive memory, a search agent, an intensification agent and a diversification agent. We use the results of a preliminary fitness landscape study to adjust the navigation strategy in the solution space and to fix the search parameters. Our method provides competitive results and it is fast when compared with best existing techniques on instances extracted from the second DIMACS challenge.

[1]  Benjamin Weinberg Analyse et résolution approchée de problèmes d'optimisation combinatoire : application au problème de coloration de graphe , 2004 .

[2]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[3]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[4]  Joseph C. Culberson,et al.  Frozen development in graph coloring , 2001, Theor. Comput. Sci..

[5]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[6]  Alain Hertz,et al.  Efficient algorithms for finding critical subgraphs , 2004, Discret. Appl. Math..

[7]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[8]  Alain Hertz,et al.  STABULUS: A technique for finding stable sets in large graphs with tabu search , 1989, Computing.

[9]  D. Werra,et al.  Some experiments with simulated annealing for coloring graphs , 1987 .

[10]  Rafael Martí,et al.  A GRASP for Coloring Sparse Graphs , 2001, Comput. Optim. Appl..

[11]  Alain Hertz,et al.  An adaptive memory algorithm for the k-coloring problem , 2003, Discret. Appl. Math..

[12]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[13]  Alain Hertz,et al.  A survey of local search methods for graph coloring , 2004, Comput. Oper. Res..

[14]  Brigitte Jaumard,et al.  Local Optima Topology for the k-Coloring Problem , 1991, Discret. Appl. Math..

[15]  Craig A. Morgenstern Distributed coloration neighborhood search , 1993, Cliques, Coloring, and Satisfiability.

[16]  Vincent Bachelet Métaheuristiques parallèles hybrides : application au problème d'affection quadratique , 1999 .

[17]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.