Approximate G1 Cubic Surfaces for Data Approximation
暂无分享,去创建一个
[1] Stephen Mann,et al. Approximate continuity for parametric Bézier patches , 2007, Symposium on Solid and Physical Modeling.
[2] Tony DeRose,et al. 8. A Survey of Parametric Scattered Data Fitting Using Triangular Interpolants , 1992, Curve and Surface Design.
[3] G. Farin. Triangular Berstein-bezier Patches, a Survey and New Results , 1985 .
[4] Carlo H. Séquin,et al. Local surface interpolation with Bézier patches: errata and improvements , 1991, Comput. Aided Geom. Des..
[5] Ramon F. Sarraga,et al. G1 interpolation of generally unrestricted cubic Bézier curves , 1987, Comput. Aided Geom. Des..
[6] Jörg Peters. Smooth mesh interpolation with cubic patches , 1990, Comput. Aided Des..
[7] Stefanie Hahmann,et al. Polynomial Surfaces Interpolating Arbitrary Triangulations , 2003, IEEE Trans. Vis. Comput. Graph..
[8] Charles T. Loop. A G1 triangular spline surface of arbitrary topological type , 1994, Comput. Aided Geom. Des..
[9] M. A. Watkins,et al. Problems in geometric continuity , 1988 .
[10] Stephen Mann,et al. Cubic precision Clough-Tocher interpolation , 1999, Comput. Aided Geom. Des..
[11] Yingbin Liu,et al. Approximate Continuity for Functional , Triangular Bézier Patches , 2006 .
[12] Stephen Mann. Surface approximation using geometric Hermite patches , 1992 .