An aggregation model of cockroaches with fast-or-slow motion dichotomy

We propose a mathematical model, namely a reaction-diffusion system, to describe social behaviour of cockroaches. An essential new aspect in our model is that the dispersion behaviour due to overcrowding effect is taken into account as a counterpart to commonly studied aggregation. This consideration leads to an intriguing new phenomenon which has not been observed in the literature. Namely, due to the competition between aggregation towards areas of higher concentration of pheromone and dispersion avoiding overcrowded areas, the cockroaches aggregate more at the transition area of pheromone. Moreover, we also consider the fast reaction limit where the switching rate between active and inactive subpopulations tends to infinity. By utilising improved duality and energy methods, together with the regularisation of heat operator, we prove that the weak solution of the reaction-diffusion system converges to that of a reaction-cross-diffusion system.

[1]  José Halloy,et al.  Collegial decision making based on social amplification leads to optimal group formation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  E. Hill Journal of Theoretical Biology , 1961, Nature.

[3]  E. A. Martinko,et al.  Cockroach aggregation pheromones: analysis of aggregation tendency and species specificity (Orthoptera: Blattidae) , 1972 .

[4]  Bonnie L Bassler,et al.  Bacterial quorum sensing: its role in virulence and possibilities for its control. , 2012, Cold Spring Harbor perspectives in medicine.

[5]  Edward Osborne Wilson,et al.  Cockroaches: Ecology, Behavior, and Natural History , 2007 .

[6]  E. Harrell Communications in Partial Differential Equations , 2007 .

[7]  Esther S. Daus,et al.  Cross-diffusion systems and fast-reaction limits , 2017, Bulletin des Sciences Mathématiques.

[8]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[9]  Jiro Okada Cockroach antennae , 2009, Scholarpedia.

[10]  Shoziro Ishii,et al.  An Aggregation Pheromone of the German Cockroach Blattella germanica L. (Orthoptera : Blattellidae) : I. Site of the Pheromone Production , 1967 .

[11]  Volume 16 , 2004, Journal of Clinical Monitoring and Computing.

[12]  M. Mimura,et al.  Infinite dimensional relaxation oscillation in aggregation-growth systems , 2012 .

[13]  Darboux,et al.  Bulletin des Sciences Mathématiques , 1889 .

[14]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[15]  Jeff Morgan,et al.  Indirect Diffusion Effect in Degenerate Reaction-Diffusion Systems , 2020, SIAM J. Math. Anal..

[16]  M. Dambach,et al.  Aggregation density and longevity correlate with humidity in first-instar nymphs of the cockroach (Blattella germanica L., Dictyoptera). , 1999, Journal of insect physiology.

[17]  D. Lamberton,et al.  Equations d'évolution linéaires associées à des semi-groupes de contractions dans les espaces LP , 1987 .

[18]  Shin'ichi Oishi,et al.  Japan Journal of Industrial and Applied Mathematics: Guest editors' preface , 2009 .

[19]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[20]  Shoziro Ishii,et al.  An Aggregation Pheromone of the German Cockroach, Blattella germanica (L.) : 2. Species Specificity of the Pheromone , 1970 .

[21]  Monica F. Poelchau,et al.  Hemimetabolous genomes reveal molecular basis of termite eusociality , 2017, Nature Ecology & Evolution.

[22]  J. Petersson,et al.  On global existence for semilinear parabolic systems , 2005 .

[23]  Masayasu Mimura,et al.  A link between microscopic and macroscopic models of self-organized aggregation , 2012, Networks Heterog. Media.

[24]  S. Fretwell,et al.  On territorial behavior and other factors influencing habitat distribution in birds , 1969 .

[25]  L. Desvillettes,et al.  New results for triangular reaction cross diffusion system , 2014, 1408.5814.

[26]  Dieter Bothe,et al.  Cross-Diffusion Limit for a Reaction-Diffusion System with Fast Reversible Reaction , 2012 .

[27]  Laurent Desvillettes,et al.  Improved Duality Estimates and Applications to Reaction-Diffusion Equations , 2013, 1304.4040.

[28]  Julia Martin,et al.  Pattern , 2005, The Fairchild Books Dictionary of Fashion.

[29]  V. G. Troitsky,et al.  Journal of Mathematical Analysis and Applications , 1960 .

[30]  The bulletin of mathematical biophysics , 2005, Protoplasma.

[31]  C. Patlak Random walk with persistence and external bias , 1953 .

[32]  M. Mimura,et al.  A model aided understanding of spot pattern formation in chemotactic E. coli colonies , 2010 .

[33]  L. Edelstein-Keshet,et al.  Complexity, pattern, and evolutionary trade-offs in animal aggregation. , 1999, Science.

[34]  Constance de Koning,et al.  Editors , 2003, Annals of Emergency Medicine.

[35]  Helge Dietert,et al.  Evolution of dietary diversity and a starvation driven cross-diffusion system as its singular limit , 2020, Journal of mathematical biology.

[36]  Jean-Louis Deneubourg,et al.  From Aggregation to Dispersion: How Habitat Fragmentation Prevents the Emergence of Consensual Decision Making in a Group , 2013, PloS one.

[37]  Danielle Hilhorst,et al.  Singular limit for a reaction-diffusion-ODE system in a neolithic transition model , 2021 .

[38]  Masayasu Mimura,et al.  Diffusion, Cross-diffusion and Competitive Interaction , 2006, Journal of mathematical biology.