Twin-width and permutations

Inspired by a width invariant defined on permutations by Guillemot and Marx, the twin-width invariant has been recently introduced by Bonnet, Kim, Thomassé, and Watrigant. We prove that a class of binary relational structures (that is: edge-colored partially directed graphs) has bounded twin-width if and only if it is a first-order transduction of a proper permutation class. As a by-product, it shows that every class with bounded twin-width contains at most 2O(n) pairwise non-isomorphic n-vertex graphs. 2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of computing → Graph theory

[1]  Benjamin Rossman,et al.  Homomorphism preservation theorems , 2008, JACM.

[2]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[3]  Pierre Simon,et al.  Ordered graphs of bounded twin-width , 2021, ArXiv.

[4]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[5]  Marc Noy,et al.  Growth constants of minor-closed classes of graphs , 2010, J. Comb. Theory B.

[6]  Eun Jung Kim,et al.  Twin-width I: tractable FO model checking , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[7]  Mathilde Bouvel,et al.  Two first-order logics of permutations , 2018, Journal of Combinatorial Theory.

[8]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[9]  Patrice Ossona de Mendez,et al.  TWIN-WIDTH IV: LOW COMPLEXITY MATRICES , 2021 .

[10]  Jaroslav Nesetril,et al.  Linear rankwidth meets stability , 2019, SODA.

[11]  Dániel Marx,et al.  Finding small patterns in permutations in linear time , 2013, SODA.

[12]  Stephan Kreutzer,et al.  First-Order Interpretations of Bounded Expansion Classes , 2018, ICALP.

[13]  Rémi Watrigant,et al.  Twin-width III: Max Independent Set and Coloring , 2020, ArXiv.

[14]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[15]  Stephan Kreutzer,et al.  First-Order Interpretations of Bounded Expansion Classes , 2020, ACM Trans. Comput. Log..

[16]  Rémi Watrigant,et al.  Twin-width II: small classes , 2020, SODA.

[17]  Bruno Courcelle,et al.  The Monadic Second order Logic of Graphs VI: on Several Representations of Graphs By Relational Structures , 1994, Discret. Appl. Math..