Phototransistors based on InP HEMTs and their applications to millimeter-wave radio-on-fiber systems

Phototransistors based on InP high electron-mobility transistors (HEMTs) are investigated for millimeter-wave radio-on-fiber system applications. By clarifying the photodetection mechanism in InP HEMTs, the phototransistor internal gain is determined. We present their use as millimeter-wave harmonic optoelectronic mixers and characterize them at the 60-GHz band. In order to evaluate the InP HEMT optoelectronic mixer performance, internal conversion gain is introduced and a maximum of 17 dB is obtained for 60-GHz harmonic optoelectronic up-conversion. Utilizing them, we construct a 60-GHz radio-on-fiber system and demonstrate 622-Mb/s data transmission over 30-km single-mode fiber and 3-m free space at 60-GHz band.

[1]  David Graham Moodie,et al.  Novel techniques for high-capacity 60-GHz fiber-radio transmission systems , 1997 .

[2]  C. Rauscher,et al.  Heterodyne reception of millimeterwave-modulated optical signals with an InP-based transistor , 1994 .

[3]  Alain Cappy,et al.  Electron transport properties of strained InxGa1−xAs , 1990 .

[4]  D. Kim,et al.  High optical responsivity of InAlAs-InGaAs metamorphic high-electron mobility transistor on GaAs substrate with composite channels , 2003, IEEE Photonics Technology Letters.

[5]  K. Takahata,et al.  Characteristics of InAlAs/InGaAs high-electron-mobility transistors under illumination with modulated light , 1999 .

[6]  K. Brennan Theory of the steady‐state hole drift velocity in InGaAs , 1987 .

[7]  A. Paolella,et al.  MMIC compatible lightwave-microwave mixing techniques , 1992 .

[8]  E. Suematsu,et al.  A fiber optic/millimeter-wave radio transmission link using HBT as direct photodetector and an optoelectronic upconverter , 1996 .

[9]  Stephen A. Maas,et al.  Microwave Mixers , 1986 .

[10]  Joe C. Campbell,et al.  Chapter 5 Phototransistors for Lightwave Communications , 1985 .

[11]  Daehyun Kim,et al.  Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors , 2004 .

[12]  H. Ogawa,et al.  Monolithic image rejection optoelectronic up-converters that employ the MMIC process , 1993 .

[13]  Shoji Yamahata,et al.  Ultrahigh-speed InP/InGaAs DHPTs for OEMMICs , 2001 .

[14]  Gadi Eisenstein,et al.  Optoelectronic mixing, modulation, and injection locking in millimeter-wave self-oscillating InP/InGaAs heterojunction bipolar photo transistors-single and dual transistor configurations , 2001 .

[15]  Ken-ichi Kitayama,et al.  Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation , 1999 .

[16]  Stephan W Koch,et al.  Physics of Optoelectronic Devices , 1995 .

[17]  Hyo-Soon Kang,et al.  Characteristics of InP HEMT harmonic optoelectronic mixers and their application to 60 GHz radio-on-fiber systems , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[18]  Hideo Ohno,et al.  High-speed photoconductive detectors using GaInAs , 1981 .

[19]  Y. Yamashita,et al.  Pseudomorphic In/sub 0.52/Al/sub 0.48/As/In/sub 0.7/Ga/sub 0.3/As HEMTs with an ultrahigh f/sub T/ of 562 GHz , 2002, IEEE Electron Device Letters.

[20]  U. Gliese,et al.  Chromatic dispersion in fiber-optic microwave and millimeter-wave links , 1996 .