Sampling from Archimedean copulas

We develop sampling algorithms for multivariate Archimedean copulas. For exchangeable copulas, where there is only one generating function, we first analyse the distribution of the copula itself, deriving a number of integral representations and a generating function representation. One of the integral representations is related, by a form of convolution, to the distribution whose Laplace transform yields the copula generating function. In the infinite-dimensional limit there is a direct connection between the distribution of the copula value and the inverse Laplace transform. Armed with these results, we present three sampling algorithms, all of which entail drawing from a one-dimensional distribution and then scaling the result to create random deviates distributed according to the copula. We implement and compare the various methods. For more general cases, in which an N-dimensional Archimedean copula is given by N-1 nested generating functions, we present algorithms in which each new variate is drawn conditional only on the value of the copula of the previously drawn variates. We also discuss the use of composite nested and exchangeable copulas for modelling random variates with a natural hierarchical structure, such as ratings and sectors for obligors in credit baskets.

[1]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[2]  P. J. Schonbucher Credit Derivatives Pricing Models , 2003 .

[3]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[4]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[5]  Louis B. Rall,et al.  Automatic differentiation , 1981 .

[6]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[7]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[8]  Alexander J. McNeil,et al.  Dependent defaults in models of portfolio credit risk , 2003 .

[9]  H. Joe Multivariate models and dependence concepts , 1998 .

[10]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[11]  R. Nelsen An Introduction to Copulas , 1998 .

[12]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[13]  William H. Press,et al.  Numerical recipes in C , 2002 .

[14]  Joachim H. Ahrens,et al.  Computer methods for sampling from gamma, beta, poisson and bionomial distributions , 1974, Computing.

[15]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[16]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[17]  L. Dixon,et al.  Automatic differentiation of algorithms , 2000 .

[18]  C. Kimberling A probabilistic interpretation of complete monotonicity , 1974 .

[19]  Ludwig Bieberbach Schriften des mathematischen Instituts und des Instituts für angewandte Mathematik der Universität Berlin , 1938 .

[20]  Dawn Hunter Basket default swaps, CDOs and factor copulas , 2005 .

[21]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[22]  Calyampudi R. Rao Handbook of statistics , 1980 .

[23]  P. Schönbucher,et al.  Copula-Dependent Defaults in Intensity Models , 2001 .

[24]  Fritz Oberhettinger,et al.  Tables of Fourier Transforms and Fourier Transforms of Distributions , 1990 .

[25]  Eric Bouyé,et al.  Copulas for Finance - A Reading Guide and Some Applications , 2000 .

[26]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[27]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[28]  David X. Li On Default Correlation , 2000 .