Salt, Hot Water, and Silicon Compounds Tracing Massive Twin Disks

We report results of -resolution observations toward the O-type proto-binary system IRAS 16547–4247 with the Atacama Large Millimeter/submillimeter Array. We present dynamical and chemical structures of the circumbinary disk, circumstellar disks, outflows, and jets, illustrated by multi-wavelength continuum and various molecular lines. In particular, we detect sodium chloride, silicon compounds, and vibrationally excited water lines as probes of the individual protostellar disks at a scale of 100 au. These are complementary to typical hot-core molecules tracing the circumbinary structures on a 1000 au scale. The H2O line tracing inner disks has an upper-state energy of , indicating a high temperature of the disks. On the other hand, despite the detected transitions of NaCl, SiO, and SiS not necessarily having high upper-state energies, they are enhanced only in the vicinity of the protostars. We posit that these molecules are the products of dust destruction, which only happens in the inner disks. This is the second detection of alkali metal halide in protostellar systems after the case of the disk of Orion Source I, and also one of few massive protostellar disks associated with high-energy transition water and silicon compounds. These new results suggest that these “hot-disk” lines may be common in innermost disks around massive protostars, and have great potential for future research of massive star formation. We also tentatively find that the twin disks are counter-rotating, which might give a hint of the origin of the massive proto-binary system IRAS 16547–4247.

[1]  M. Machida,et al.  Twin Jets and Close Binary Formation , 2020, The Astrophysical Journal.

[2]  M. Krumholz,et al.  The Role of Outflows, Radiation Pressure, and Magnetic Fields in Massive Star Formation , 2020, The Astronomical Journal.

[3]  M. Beltr'an Disks around O-type young stellar objects , 2020, 2005.06912.

[4]  A. Ginsburg,et al.  Observations of the Orion Source I Disk and Outflow Interface , 2019, The Astrophysical Journal.

[5]  N. Kee,et al.  Spiral arms and instability within the AFGL 4176 mm1 disc , 2019, Astronomy & Astrophysics.

[6]  G. Garay,et al.  Discovery of a Photoionized Bipolar Outflow toward the Massive Protostar G45.47+0.05 , 2019, The Astrophysical Journal.

[7]  L. Kristensen,et al.  The bridge: a transient phenomenon of forming stellar multiples , 2019, Astronomy & Astrophysics.

[8]  A. Ginsburg,et al.  Substructures in the Keplerian disc around the O-type (proto-)star G17.64+0.16 (Corrigendum) , 2019, Astronomy & Astrophysics.

[9]  M. Honma,et al.  The First Bird’s-eye View of a Gravitationally Unstable Accretion Disk in High-mass Star Formation , 2019, The Astrophysical Journal.

[10]  N. Sakai,et al.  Spatial Distribution of AlO in a High-mass Protostar Candidate Orion Source I , 2019, The Astrophysical Journal.

[11]  G. Garay,et al.  Dynamics of a massive binary at birth , 2019, Nature Astronomy.

[12]  G. Garay,et al.  An Asymmetric Keplerian Disk Surrounding the O-type Protostar IRAS 16547−4247 , 2019, The Astrophysical Journal.

[13]  A. Ginsburg,et al.  Orion SrcI’s Disk Is Salty , 2019, The Astrophysical Journal.

[14]  G. Garay,et al.  An Ordered Envelope–Disk Transition in the Massive Protostellar Source G339.88-1.26 , 2018, The Astrophysical Journal.

[15]  G. Fuller,et al.  Chasing discs around O-type (proto)stars , 2018, Astronomy & Astrophysics.

[16]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[17]  V. Rosero,et al.  The SOMA Radio Survey. I. Comprehensive SEDs of High-mass Protostars from Infrared to Radio and the Emergence of Ionization Feedback , 2018, The Astrophysical Journal.

[18]  T. Hirota Recent progress in high-mass star-formation studies with ALMA , 2018, 1806.10837.

[19]  G. Anglada,et al.  Radio jets from young stellar objects , 2018, The Astronomy and Astrophysics Review.

[20]  A. Ginsburg,et al.  A Keplerian Disk around Orion SrCI, a ∼ 15 M⊙ YSO , 2018, The Astrophysical Journal.

[21]  R. Kuiper,et al.  First hydrodynamics simulations of radiation forces and photoionization feedback in massive star formation , 2018, Astronomy & Astrophysics.

[22]  Q. Zhang,et al.  On the Nature of Orion Source I , 2018 .

[23]  Astronomy,et al.  Forming spectroscopic massive protobinaries by disc fragmentation , 2017, 1710.01162.

[24]  M. Honma,et al.  Disk-driven rotating bipolar outflow in Orion Source I , 2017, Nature Astronomy.

[25]  T. Hosokawa,et al.  Massive outflows driven by magnetic effects in star-forming clouds with high mass accretion rates , 2017, 1704.03185.

[26]  S. Longmore,et al.  Fragmentation and disk formation in high-mass star formation: The ALMA view of G351.77-0.54 at 0.06'' resolution , 2017, 1703.07235.

[27]  Kei E. I. Tanaka,et al.  THE IMPACT OF FEEDBACK DURING MASSIVE STAR FORMATION BY CORE ACCRETION , 2016, 1610.08856.

[28]  T. O. U. S. A. A. O. Physics,et al.  On the existence of accretion-driven bursts in massive star formation , 2016, 1609.03402.

[29]  R. Klein,et al.  An unstable truth: how massive stars get their mass , 2016, 1607.03117.

[30]  M. Dunham,et al.  THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS , 2016, 1606.08445.

[31]  S. Molinari,et al.  The physical and chemical structure of Sagittarius B2, I. Three-dimensional thermal dust and free-free continuum modeling on 100 au to 45 pc scales , 2016, 1602.02274.

[32]  G. Meynet,et al.  Massive star formation by accretion I. Disc accretion , 2015, 1511.07640.

[33]  H. Beuther,et al.  A KEPLERIAN-LIKE DISK AROUND THE FORMING O-TYPE STAR AFGL 4176 , 2015, 1509.08469.

[34]  Kei E. I. Tanaka,et al.  OUTFLOW-CONFINED H ii REGIONS. I. FIRST SIGNPOSTS OF MASSIVE STAR FORMATION , 2015, 1509.06754.

[35]  G. Garay,et al.  IRAS 16547−4247: A NEW CANDIDATE OF A PROTOCLUSTER UNVEILED WITH ALMA , 2014, 1411.7485.

[36]  G. Garay,et al.  ALMA reveals a candidate hot and compact disc around the O-type protostar IRAS 16547-4247 , 2014, 1411.7421.

[37]  M. Honma,et al.  A HOT MOLECULAR CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR ORION SOURCE I , 2013, 1312.0315.

[38]  M. Honma,et al.  THE FIRST DETECTION OF THE 232 GHz VIBRATIONALLY EXCITED H2O MASER IN ORION KL WITH ALMA , 2012, 1208.4489.

[39]  M. Bate Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation , 2011, 1110.1092.

[40]  T. Nakamoto,et al.  DIRECT STELLAR RADIATION PRESSURE AT THE DUST SUBLIMATION FRONT IN MASSIVE STAR FORMATION: EFFECTS OF A DUST-FREE DISK , 2011 .

[41]  S. Lumsden,et al.  The Red MSX Source survey: critical tests of accretion models for the formation of massive stars , 2011, 1105.3984.

[42]  R. Klein,et al.  THE FORMATION OF LOW-MASS BINARY STAR SYSTEMS VIA TURBULENT FRAGMENTATION , 2010, 1010.3702.

[43]  T. Henning,et al.  CIRCUMVENTING THE RADIATION PRESSURE BARRIER IN THE FORMATION OF MASSIVE STARS VIA DISK ACCRETION , 2010, 1008.4516.

[44]  G. Garay,et al.  THE ROTATING MOLECULAR STRUCTURES AND THE IONIZED OUTFLOW ASSOCIATED WITH IRAS 16547−4247 , 2009, 0906.3326.

[45]  R. Klein,et al.  The Formation of Massive Star Systems by Accretion , 2009, Science.

[46]  K. Omukai,et al.  EVOLUTION OF MASSIVE PROTOSTARS WITH HIGH ACCRETION RATES , 2008, 0806.4122.

[47]  G. Garay,et al.  THE COLLIMATED JET SOURCE IN IRAS 16547-4247: TIME VARIATION, POSSIBLE PRECESSION, AND UPPER LIMITS TO THE PROPER MOTIONS ALONG THE JET AXIS , 2008, 0804.0858.

[48]  Qizhou Zhang,et al.  The Early Evolution of Massive Stars: Radio Recombination Line Spectra , 2007, 0708.3388.

[49]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[50]  G. Garay,et al.  High Angular Resolution Observations of the Collimated Jet Source Associated with a Massive Protostar in IRAS 16547–4247 , 2005, astro-ph/0503333.

[51]  G. Garay,et al.  A Triple Radio Continuum Source Associated with IRAS 16547-4247: A Collimated Stellar Wind Emanating from a Massive Protostar , 2003 .

[52]  M. Wolfire,et al.  Conditions for the formation of massive stars , 1987 .

[53]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[54]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .