Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals

Magnetotactic bacteria contain chains of magnetically interacting crystals (magnetosome crystals), which they use for navigation (magnetotaxis). To improve magnetotaxis efficiency, the magnetosome crystals (usually magnetite or greigite in composition) should be magnetically stable single-domain (SSD) particles. Smaller single-domain particles become magnetically unstable owing to thermal fluctuations and are termed superparamagnetic (SP). Previous calculations for the SSD/SP threshold size or blocking volume did not include the contribution of magnetic interactions. In this study, the blocking volume has been calculated as a function of grain elongation and separation for chains of identical magnetite grains. The inclusion of magnetic interactions was found to decrease the blocking volume, thereby increasing the range of SSD behaviour. Combining the results with previously published calculations for the SSD to multidomain threshold size in chains of magnetite reveals that interactions significantly increase the SSD range. We argue that chains of interacting magnetosome crystals found in magnetotactic bacteria have used this effect to improve magnetotaxis.

[1]  R. Kopp,et al.  The identification and biogeochemical interpretation of fossil magnetotactic bacteria , 2008 .

[2]  A. Muxworthy,et al.  Configurational anisotropy in single‐domain and pseudosingle‐domain grains of magnetite , 2006 .

[3]  Wyn Williams,et al.  Three-dimensional micromagnetic calculations for magnetite using FFT , 1996 .

[4]  J. Kirschvink,et al.  Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. , 2000, Geochimica et cosmochimica acta.

[5]  A. Muxworthy Effect of grain interactions on the frequency dependence of magnetic susceptibility , 2001 .

[6]  A. Muxworthy,et al.  Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes , 2006 .

[7]  Dirk Schumann,et al.  Gigantism in unique biogenic magnetite at the Paleocene–Eocene Thermal Maximum , 2008, Proceedings of the National Academy of Sciences.

[8]  R. Frankel,et al.  Habits of Magnetosome Crystals in Coccoid Magnetotactic Bacteria , 2005, Applied and Environmental Microbiology.

[9]  Michael Winklhofer,et al.  Magnetic blocking temperatures of magnetite calculated with a three‐dimensional micromagnetic model , 1997 .

[10]  J. Dormann,et al.  On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results , 1999 .

[11]  A. P. Taylor,et al.  Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes , 2004, Journal of microscopy.

[12]  R. Kopp,et al.  The Identification and Interpretation of Microbial Biogeomagnetism , 2007 .

[13]  K. Fabian,et al.  Three-dimensional micromagnetic calculations for naturally shaped magnetite: Octahedra and magnetosomes , 2005 .

[14]  David J. Dunlop,et al.  Rock Magnetism: Fundamentals and Frontiers , 1997 .

[15]  A. Stancu,et al.  Modelling magnetic relaxation phenomena in fine particles systems with a Preisach–Néel model , 1998 .

[16]  A. Newell,et al.  Single‐domain critical sizes for coercivity and remanence , 1999 .

[17]  Robert F. Butler,et al.  Theoretical single‐domain grain size range in magnetite and titanomagnetite , 1975 .

[18]  R. Frankel,et al.  Crystal-size and shape distributions of magnetite from uncultured magnetotactic bacteria as a potential biomarker , 2005 .

[19]  David J. Dunlop,et al.  Rock Magnetism: Frontmatter , 1997 .

[20]  A. Muxworthy,et al.  Distribution anisotropy: the influence of magnetic interactions on the anisotropy of magnetic remanence , 2004, Geological Society, London, Special Publications.

[21]  H. Worm On the superparamagnetic—stable single domain transition for magnetite, and frequency dependence of susceptibility , 1998 .

[22]  Wyn Williams,et al.  Three-dimensional micromagnetic modelling of ferromagnetic domain structure , 1989, Nature.

[23]  J. Dormann,et al.  A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws , 1988 .

[24]  R. Frankel,et al.  Magnetosome formation in prokaryotes , 2004, Nature Reviews Microbiology.

[25]  J. Dormann,et al.  Magnetic Relaxation in Fine‐Particle Systems , 2007 .

[26]  Werner Scholz,et al.  Time resolved micromagnetics using a preconditioned time integration method , 2002 .

[27]  Wyn Williams,et al.  High-temperature magnetic stability of small magnetite particles , 2003 .

[28]  D. Dunlop,et al.  An experimental evaluation of single domain theories , 1969 .