Electrohydrodynamic printing for scalable MoS2 flake coating: application to gas sensing device

Scalable sub-micrometer molybdenum disulfide ([Formula: see text]) flake films with highly uniform coverage were created using a systematic approach. An electrohydrodynamic (EHD) printing process realized a remarkably uniform distribution of exfoliated [Formula: see text] flakes on desired substrates. In combination with a fast evaporating dispersion medium and an optimal choice of operating parameters, the EHD printing can produce a film rapidly on a substrate without excessive agglomeration or cluster formation, which can be problems in previously reported liquid-based continuous film methods. The printing of exfoliated [Formula: see text] flakes enabled the fabrication of a gas sensor with high performance and reproducibility for [Formula: see text] and [Formula: see text].

[1]  Byoung Hun Lee,et al.  Charge-transfer-based Gas Sensing Using Atomic-layer MoS2 , 2015, Scientific Reports.

[2]  Byoung Hun Lee,et al.  Chemical Sensing of 2D Graphene/MoS2 Heterostructure device. , 2015, ACS applied materials & interfaces.

[3]  P. Laplace,et al.  Functionalization of liquid-exfoliated two-dimensional 2H-MoS2. , 2015, Angewandte Chemie.

[4]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[5]  J. Coleman,et al.  Photoconductivity of solution-processed MoS2 films , 2013 .

[6]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[7]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[8]  A. Jaworek,et al.  Jet and drops formation in electrohydrodynamic spraying of liquids. A systematic approach , 1999 .

[9]  Byoung Hun Lee,et al.  Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. , 2015, ACS applied materials & interfaces.

[10]  K. Matsushige,et al.  Electrospray deposition, model, and experiment: toward general control of film morphology. , 2006, The journal of physical chemistry. B.

[11]  A. Jaworek,et al.  Electrospray droplet sources for thin film deposition , 2007 .

[12]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[13]  Stefano Sanvito,et al.  Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate , 2013, 1301.2491.

[14]  Gyeong Sook Bang,et al.  Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. , 2014, ACS applied materials & interfaces.

[15]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[16]  Eunkyoung Kim,et al.  Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells , 2013 .

[17]  Luca Ottaviano,et al.  Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors , 2015 .

[18]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[19]  Chongwu Zhou,et al.  High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. , 2014, ACS nano.

[20]  Xiang-Rong Yu,et al.  Auger parameters for sulfur-containing compounds using a mixed aluminum-silver excitation source , 1990 .

[21]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[22]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[23]  Derek Dunn-Rankin,et al.  Effects of capillary spacing on EHD spraying from an array of cone jets , 2002 .

[24]  Sam S. Yoon,et al.  Self‐Healing Reduced Graphene Oxide Films by Supersonic Kinetic Spraying , 2014 .

[25]  G. Sorensen,et al.  Ion bombardment of MoS2 nanoplateletcoatings deposited by electrospraying , 1997 .

[26]  A. Altelaar,et al.  Direct molecular imaging of Lymnaea stagnalis nervous tissue at subcellular spatial resolution by mass spectrometry. , 2005, Analytical chemistry.

[27]  J. Coleman,et al.  Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size , 2012 .

[28]  Zaiping Guo,et al.  Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. , 2010, Chemical communications.

[29]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[30]  I. Chorkendorff,et al.  A combined X-Ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported CoMo catalysts , 1982 .

[31]  Mohan Edirisinghe,et al.  High resolution print-patterning of a nano-suspension , 2005 .

[32]  Benjamin J. Carey,et al.  Investigation of Two-Solvent Grinding-Assisted Liquid Phase Exfoliation of Layered MoS2 , 2015 .

[33]  N. H. Turner,et al.  Determination of peak positions and areas from wide‐scan XPS spectra , 1990 .

[34]  Jiantong Li,et al.  Inkjet Printing of MoS2 , 2014 .

[35]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[36]  Shengli Chang,et al.  Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field , 2013, Nanoscale Research Letters.

[37]  David J. Finn,et al.  Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications , 2014 .

[38]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[39]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[40]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.