MYC fails to efficiently shape malignant transformation in T‐cell acute lymphoblastic leukemia

MYC is a potent oncogene involved in ∼70% of human cancers, inducing tumorigenesis with high penetrance and short latency in experimental transgenic models. Accordingly, MYC is recognized as a major driver of T‐cell acute lymphoblastic leukemia (T‐ALL) in human and zebrafish/mouse models, and uncovering the context by which MYC‐mediated malignant transformation initiates and develops remains a considerable challenge. Because MYC is a very complex oncogene, highly dependent on the microenvironment and cell‐intrinsic context, we generated transgenic mice (tgMycspo) in which ectopic Myc activation occurs sporadically (<10−6 thymocytes) within otherwise normal thymic environment, thereby mimicking the unicellular context in which oncogenic alterations initiate human tumors. We show that while Myc+ clones in tgMycspo mice develop and initially proliferate in thymus and the periphery, no tumor or clonal expansion progress in aging mice (n = 130), suggesting an unexpectedly low ability of Myc to initiate efficient tumorigenesis. Furthermore, to determine the relevance of this observation in human pathogenesis we analyzed a human T‐ALL case at diagnosis and relapse using the molecular stigmata of V(D)J recombination as markers of malignant progression; we similarly demonstrate that despite the occurrence of TAL1 and MYC translocations in early thymocyte ontogeny, subsequent oncogenic alterations were required to drive oncogenesis. Altogether, our data suggest that although central to T‐ALL, MYC overexpression per se is inefficient in triggering the cascade of events leading to malignant transformation. © 2013 Wiley Periodicals, Inc.

[1]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[2]  G. Wahl,et al.  c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. , 2002, Molecular cell.

[3]  Charles Lee,et al.  The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. , 2006, Blood.

[4]  Christian Buske,et al.  A novel role for Lef-1, a central transcription mediator of Wnt signaling, in leukemogenesis , 2008, The Journal of experimental medicine.

[5]  L. Loeb,et al.  Human cancers express mutator phenotypes: origin, consequences and targeting , 2011, Nature Reviews Cancer.

[6]  M. Zvelebil,et al.  iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72–polymorphic p53 , 2006, Nature Genetics.

[7]  F. Sigaux,et al.  Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. , 1996, Blood.

[8]  K. Gross,et al.  An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T‐cell malignancies in transgenic mice , 1997, The EMBO journal.

[9]  Stella Pelengaris,et al.  c-MYC: more than just a matter of life and death , 2002, Nature Reviews Cancer.

[10]  Adam A. Margolin,et al.  NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth , 2006, Proceedings of the National Academy of Sciences.

[11]  D. Neuberg,et al.  Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia , 2011, The Journal of experimental medicine.

[12]  W. Gu,et al.  Non-transcriptional control of DNA replication by c-Myc , 2007, Nature.

[13]  Dick de Ridder,et al.  New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling , 2005, The Journal of experimental medicine.

[14]  Min Wang,et al.  The expression of iASPP in acute leukemias. , 2005, Leukemia research.

[15]  T. Rabbitts,et al.  Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. , 1996, The EMBO journal.

[16]  M. Varella‐Garcia,et al.  Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation , 2008, Nature.

[17]  David M Langenau,et al.  Myc-Induced T Cell Leukemia in Transgenic Zebrafish , 2003, Science.

[18]  A. Ferrando,et al.  Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. , 2004, Blood.

[19]  J. Barata,et al.  Negative prognostic impact of PTEN mutation in pediatric T-cell acute lymphoblastic leukemia , 2010, Leukemia.

[20]  B. Nadel,et al.  Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia. , 2010, Blood.

[21]  J. Meijerink Genetic rearrangements in relation to immunophenotype and outcome in T-cell acute lymphoblastic leukaemia. , 2010, Best practice & research. Clinical haematology.

[22]  J. Aster,et al.  c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. , 2006, Genes & development.

[23]  B. Nadel,et al.  Screening for leukemia- and clone-specific markers at birth in children with T-cell precursor ALL suggests a predominantly postnatal origin. , 2007, Blood.

[24]  F. Sigaux,et al.  p16INK4A tumor suppressor gene expression and CD3epsilon deficiency but not pre-TCR deficiency inhibit TAL1-linked T-lineage leukemogenesis. , 2007, Blood.

[25]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[26]  M. Varella‐Garcia,et al.  Suppression of leukemia development caused by PTEN loss , 2011, Proceedings of the National Academy of Sciences.

[27]  Chi V Dang,et al.  MYC on the Path to Cancer , 2012, Cell.

[28]  B. Nadel,et al.  Different chromosomal breakpoints impact the level of LMO2 expression in T-ALL. , 2007, Blood.

[29]  A. W. Harris,et al.  MYC levels govern hematopoietic tumor type and latency in transgenic mice. , 2006, Blood.

[30]  T. Hoang,et al.  SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-Tα chain expression , 2000, Nature Immunology.

[31]  B. Malissen,et al.  Visualization of the earliest steps of gammadelta T cell development in the adult thymus. , 2006, Nature immunology.

[32]  B. Nadel,et al.  Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. , 2012, Blood.

[33]  M. Kelliher,et al.  The Notch1/c-Myc Pathway in T Cell Leukemia , 2007, Cell cycle.

[34]  F. Sigaux,et al.  Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse , 2011 .

[35]  Kiran C. Bobba,et al.  The genetic basis of early T-cell precursor acute lymphoblastic leukaemia , 2012, Nature.

[36]  Donna Neuberg,et al.  Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. , 2010, Blood.

[37]  B. Nadel,et al.  V(D)J-mediated Translocations in Lymphoid Neoplasms , 2002, The Journal of experimental medicine.

[38]  L. Chin,et al.  High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. , 2009, Blood.

[39]  Govind Bhagat,et al.  Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia , 2007, Nature Medicine.

[40]  M. Cogné,et al.  The 5′HS4 insulator element is an efficient tool to analyse the transient expression of an Eμ-GFP vector in a transgenic mouse model , 2005, Transgenic Research.

[41]  F. Sigaux,et al.  HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). , 2005, Blood.

[42]  B. Nadel,et al.  The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. , 2007, Blood.

[43]  A. Look,et al.  Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. Macintyre,et al.  Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. , 2003, Blood.

[45]  L. Penn,et al.  Reflecting on 25 years with MYC , 2008, Nature Reviews Cancer.

[46]  Y. Yashiro‐Ohtani,et al.  Notch1 co-opts lymphoid enhancer factor 1 for survival of murine T-cell lymphomas. , 2007, Blood.

[47]  B. Nadel,et al.  Distinct t(7;9)(q34;q32) breakpoints in healthy individuals and individuals with T-ALL , 2003, Nature Genetics.

[48]  Christopher B. Miller,et al.  Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. , 2009, The New England journal of medicine.

[49]  A. Ferrando,et al.  Gene expression profiling in T-cell acute lymphoblastic leukemia. , 2003, Seminars in hematology.

[50]  A. Protopopov,et al.  Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1 , 2008, The Journal of experimental medicine.

[51]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[52]  B. Nadel,et al.  TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRα gene expression. , 2012, Cancer cell.

[53]  Tactggtat Agcctagatgtgtttaga,et al.  J-mediated Translocations in Lymphoid Neoplasms : A Functional Assessment of Genomic Instability by Cryptic Sites , 2001 .

[54]  M. Link,et al.  Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. , 1997, Cancer research.

[55]  B. Nadel,et al.  Long-term clonal persistence and evolution of t(14;18)-bearing B cells in healthy individuals , 2006, Leukemia.

[56]  Kathryn A. O’Donnell,et al.  The great MYC escape in tumorigenesis. , 2005, Cancer cell.