Miniature superconducting filters

Because of the intrinsic low loss of high temperature superconductors at microwave frequencies it is possible to reduce the size of filters while still retaining excellent performance. In order to accomplish this reduction in size new filter geometry is required. Under this theme of miniaturization a number of new and novel types of microwave filter are discussed, this includes delay line filters, lumped element filters and filters based on slow wave structures. Each of the filters are constructed out of high temperature superconductors (HTS).

[1]  Michael P. Clough,et al.  Cookbooks and Constructivism. , 1994 .

[2]  Nicolas A. F. Jaeger,et al.  Slow-wave electrode for use in compound semiconductor electrooptic modulators , 1992 .

[3]  R. W. Ralston,et al.  Superconductive analog signal processing devices , 1989, Proc. IEEE.

[4]  F. Huang Frequency dependent transmission line loss in quasitransversal microwave filters , 1994 .

[5]  D. McGinnis,et al.  Design of variable phase velocity kinetic inductance delay lines and their measured characteristics when fabricated by a simple Nb based process , 1989 .

[6]  R. S. Withers,et al.  High-T/sub c/ superconductive delay line structures, and signal conditioning networks , 1991 .

[7]  W. T. Weeks,et al.  Resistive and inductive skin effect in rectangular conductors , 1979 .

[8]  Tatsuo Itoh,et al.  Analysis of Slow-Wave Coplanar Waveguide for Monolithic Integrated Circuits , 1983 .

[10]  H.C.H. Cheung,et al.  A superconducting microwave linear phase delay line filter , 1993, IEEE Transactions on Applied Superconductivity.

[11]  N. Dagli,et al.  Millimetre wave coplanar slow wave structure on GaAs suitable for use in electro-optic modulators , 1993 .

[12]  F. Huang Low loss quasitransversal microwave filters with specified amplitude and phase characteristics , 1993 .

[13]  J. Pond,et al.  Ultra-compact microwave filters using kinetic inductance microstrip , 1991 .

[14]  R. Withers,et al.  Superconductive delay-line technology and applications , 1985 .

[15]  S.M. Ali,et al.  Current distribution, resistance, and inductance for superconducting strip transmission lines , 1991, IEEE Transactions on Applied Superconductivity.

[16]  N. G. Chew,et al.  High temperature superconductor lumped element resonator , 1993 .

[17]  Ingo Wolff,et al.  CAD models of lumped elements on GaAs up to 18 GHz , 1988 .

[18]  Michael J. Lancaster,et al.  Modified coplanar meander transmission line for MMICs , 1994 .

[19]  Michael J. Lancaster,et al.  Capacitively loaded microstrip loop resonator , 1994 .

[20]  W. L. Carter,et al.  Measurements and Modeling of Kinetic Inductance Microstrip Delay Lines , 1987, 1987 IEEE MTT-S International Microwave Symposium Digest.

[21]  H. Hasegawa,et al.  Cross-tie slow-wave coplanar waveguide on semi-insulating GaAs substrates , 1981 .

[22]  Frederick Huang Quasi-transversal synthesis of microwave chirped filters , 1992 .

[24]  W. L. Carter,et al.  Kinetic inductance microstrip delay lines , 1987 .

[25]  Erich Gornik,et al.  Microstrip transmission line resonator with epitaxial YBa/sub 2/Cu/sub 3/O/sub 7-x//NdAlO/sub 3//YBa/sub 2/Cu/sub 3/O/sub 7-x/ trilayer , 1992 .

[26]  N. Newman,et al.  High-temperature superconductive passive microwave devices , 1991, 1991 IEEE MTT-S International Microwave Symposium Digest.

[27]  F. Huang A Narrowband Quasi-Transversal Filter using a Slow-Wave Structure , 1994, 1994 24th European Microwave Conference.

[28]  Michael J. Lancaster,et al.  Edge-coupled microstrip loop resonators with capacitive loading , 1995 .

[29]  R. Humphreys,et al.  The coplanar resonator technique for determining the surface impedance of YBa/sub 2/Cu/sub 3/O/sub 7-/spl delta// thin films , 1995 .