Vibrational analysis of peptides, polypeptides, and proteins. II. β‐Poly(L‐alanine) and β‐poly(L‐alanylglycine)

The normal vibration frequencies of poly(L‐alanine) and poly(L‐alanylglycine) in the antiparallel chain‐pleated sheet structure have been calculated, using the force field for polyglycine I from the previous paper (Biopolymers 15, 2439–2464) plus additional force constants for the methyl group. The agreement with observed ir and Raman bands is very good. This substantiates the excellent transferability of the force field, since polyglycine I was shown to have a rippled‐sheet structure. The amide I and amide II mode splittings are very well accounted for by transition dipole coupling, showing that subtle structural differences are sensitively manifested through this mechanism.

[1]  S. Krimm,et al.  Vibrational analysis of peptides, polypeptides, and proteins. I. Polyglycine I , 1976, Biopolymers.

[2]  S. Krimm,et al.  A complete general valence force field for secondary chlorides , 1973 .

[3]  A Elliott,et al.  Structure of beta-poly-L-alanine: refined atomic co-ordinates for an anti-parallel beta-pleated sheet. , 1967, Journal of molecular biology.

[4]  S. Krimm,et al.  Normal vibrations of crystalline polyglycine I , 1972, Biopolymers.

[5]  W. Peticolas,et al.  Neutron‐scattering spectroscopy of the α‐ and β‐ forms of poly‐L‐alanine. Motion of the methyl side chain , 1975 .

[6]  T. Miyazawa,et al.  Low‐frequency infrared bands and chain conformations of polypeptides , 1969 .

[7]  J. Koenig,et al.  Raman spectroscopic study of mechanically deformed poly‐L‐alanine , 1974 .

[8]  T. Shimanouchi,et al.  Far‐infrared spectra of polyalanines with α‐helical and β‐form structures , 1968 .

[9]  S. Premilat,et al.  Conformational analysis of the beta sheet structure of poly-L-alanine and poly(L-alanine-glycine). , 1975, Journal of molecular biology.

[10]  B. Fanconi Low‐frequency vibrational spectra of some homopolypeptides in the solid state , 1973, Biopolymers.

[11]  S. Krimm,et al.  Assignment of torsion and low frequency bending vibrations of secondary chlorides , 1973 .

[12]  J. Koenig,et al.  Raman spectroscopic study of poly (β‐benzyl‐L‐aspartate) and sequential polypeptides , 1975 .

[13]  S. Krimm,et al.  A vibrational analysis of crystalline trans‐1,4‐polybutadiene , 1975 .

[14]  A. Elliott Infra-red spectra of polypeptides with small side chains , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  Takehiko Shimanouchi,et al.  Vibrational frequencies and modes of α‐helix , 1970 .

[16]  Donald E. Williams Nonbonded Potential Parameters Derived from Crystalline Hydrocarbons , 1967 .

[17]  J. Jakeš,et al.  A valence force field for the amide group , 1971 .

[18]  K. Itoh,et al.  Far‐infrared spectra of sequential copolymers of amino acids with alkyl group side chains , 1972, Biopolymers.

[19]  M. Tasumi,et al.  Crystal Vibrations of Polyethylene , 1967 .

[20]  T. Shimanouchi,et al.  Normal Vibrations of N‐Methylacetamide , 1958 .

[21]  T Shimanouchi,et al.  Far‐infrared spectra of N‐methylacetamide and related compounds and hydrogen‐bond force constants , 1967, Biopolymers.

[22]  K. Itoh,et al.  Far‐infrared spectra of poly(‐α‐amino acids) with basic alkyl group side chains , 1969 .

[23]  R. Fraser,et al.  POLY-L-ALANYLGLYCINE. , 1965, Journal of molecular biology.

[24]  W. Peticolas,et al.  Phonon dispersion curves and normal coordinate analysis of α‐poly‐L‐alanine , 1971, Biopolymers.

[25]  T. Miyazawa,et al.  Normal coordinate treatments of internal-rotation vibrations , 1965 .