An alternative extended block Arnoldi method for solving low-rank Sylvester equations

Abstract Projection methods based on Krylov subspaces are an effective tool for solving low-rank Sylvester matrix equations in the large scale cases. The initial problem is projected onto a sequence of nested subspaces. At each step of the process, a reduced Sylvester equation, whose coefficient matrices are restrictions of the original coefficient matrices to the projection subspaces, are solved by a direct method. In this paper, after recalling some important properties about the extended block Arnoldi process, we propose an alternative approach that enables us to determine approximate solutions by solving projected and reduced Sylvester equations whose coefficient matrices are restrictions of the inverse of the original matrices. Some numerical experiments are given in order to illustrate the performance of our approach.

[1]  Marlis Hochbruck,et al.  Preconditioned Krylov Subspace Methods for Lyapunov Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..

[2]  A. H. Bentbib,et al.  On Some Extended Block Krylov Based Methods for Large Scale Nonsymmetric Stein Matrix Equations , 2017 .

[3]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[4]  B. Datta Numerical methods for linear control systems : design and analysis , 2004 .

[5]  M. Hached Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles , 2012 .

[6]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .

[7]  Khalide Jbilou,et al.  Low rank approximate solutions to large Sylvester matrix equations , 2006, Appl. Math. Comput..

[8]  Khalide Jbilou,et al.  On some properties of the extended block and global Arnoldi methods with applications to model reduction , 2016, Numerical Algorithms.

[9]  L. Reichel,et al.  Krylov-subspace methods for the Sylvester equation , 1992 .

[10]  Lothar Reichel,et al.  Application of ADI Iterative Methods to the Restoration of Noisy Images , 1996, SIAM J. Matrix Anal. Appl..

[11]  Valeria Simoncini,et al.  A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..

[12]  Jan G. Korvink,et al.  Oberwolfach Benchmark Collection , 2005 .

[13]  Abderrahman Bouhamidi,et al.  A preconditioned block Arnoldi method for large Sylvester matrix equations , 2013, Numer. Linear Algebra Appl..

[14]  M. Heyouni,et al.  AN EXTENDED BLOCK ARNOLDI ALGORITHM FOR LARGE-SCALE SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATI ON ∗ , 2008 .

[15]  Changfeng Ma,et al.  A matrix CRS iterative method for solving a class of coupled Sylvester-transpose matrix equations , 2017, Comput. Math. Appl..

[16]  Enrique S. Quintana-Ortí,et al.  Solving stable generalized Lyapunov equations with the matrix sign function , 1999, Numerical Algorithms.

[17]  Peter Benner,et al.  On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..

[18]  Khalide Jbilou,et al.  Block Krylov Subspace Methods for Solving Large Sylvester Equations , 2002, Numerical Algorithms.

[19]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[20]  Valeria Simoncini,et al.  Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..

[21]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[22]  M. Heyouni,et al.  Extended Arnoldi methods for large low-rank Sylvester matrix equations , 2010 .

[23]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.