An alternative extended block Arnoldi method for solving low-rank Sylvester equations
暂无分享,去创建一个
[1] Marlis Hochbruck,et al. Preconditioned Krylov Subspace Methods for Lyapunov Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..
[2] A. H. Bentbib,et al. On Some Extended Block Krylov Based Methods for Large Scale Nonsymmetric Stein Matrix Equations , 2017 .
[3] G. Golub,et al. A Hessenberg-Schur method for the problem AX + XB= C , 1979 .
[4] B. Datta. Numerical methods for linear control systems : design and analysis , 2004 .
[5] M. Hached. Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles , 2012 .
[6] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .
[7] Khalide Jbilou,et al. Low rank approximate solutions to large Sylvester matrix equations , 2006, Appl. Math. Comput..
[8] Khalide Jbilou,et al. On some properties of the extended block and global Arnoldi methods with applications to model reduction , 2016, Numerical Algorithms.
[9] L. Reichel,et al. Krylov-subspace methods for the Sylvester equation , 1992 .
[10] Lothar Reichel,et al. Application of ADI Iterative Methods to the Restoration of Noisy Images , 1996, SIAM J. Matrix Anal. Appl..
[11] Valeria Simoncini,et al. A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..
[12] Jan G. Korvink,et al. Oberwolfach Benchmark Collection , 2005 .
[13] Abderrahman Bouhamidi,et al. A preconditioned block Arnoldi method for large Sylvester matrix equations , 2013, Numer. Linear Algebra Appl..
[14] M. Heyouni,et al. AN EXTENDED BLOCK ARNOLDI ALGORITHM FOR LARGE-SCALE SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATI ON ∗ , 2008 .
[15] Changfeng Ma,et al. A matrix CRS iterative method for solving a class of coupled Sylvester-transpose matrix equations , 2017, Comput. Math. Appl..
[16] Enrique S. Quintana-Ortí,et al. Solving stable generalized Lyapunov equations with the matrix sign function , 1999, Numerical Algorithms.
[17] Peter Benner,et al. On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..
[18] Khalide Jbilou,et al. Block Krylov Subspace Methods for Solving Large Sylvester Equations , 2002, Numerical Algorithms.
[19] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[20] Valeria Simoncini,et al. Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..
[21] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[22] M. Heyouni,et al. Extended Arnoldi methods for large low-rank Sylvester matrix equations , 2010 .
[23] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.