Analytical Analysis of Applying Packet Fragmentation Mechanism on Both Basic and RTS/CTS Access Methods of the IEEE 802.11b DCF Network Under Imperfect Channel and Finite Load Conditions

The mathematical modeling and performance evaluation of the IEEE 802.11 network in all its various extensions (802.11b, 802.11a, 802.11g, 802.11e, 802.11n, etc.) have already been widely explored over the past years. However, the Packet Fragmentation Mechanism (PFM), which is proposed by the IEEE work group to enhance the MAC sub-layer of the IEEE 802.11 standard in an error-prone channel, has been missed in the available literature. Yet, the PFM is the only existing solution to reduce the influence of bit error rate and the length of data packets on the packet error rate, and consequently on the performances of IEEE 802.11 networks. In this paper, we propose a new three-dimensional Markov chain in order to model, for the first time in the literature, the PFM in both Basic and RTS/CTS access methods of the IEEE 802.11b DCF network under imperfect channel and finite load conditions. Then, we develop mathematical models to derive a variety of performance metrics, such as: the overall throughput, the average packet delay successfully transmitted, the average packet drop time, the delay jitter and the packet delay distribution. Performance analysis of applying PFM on both Basic and RTS/CTS access methods of the IEEE 802.11b DCF network under imperfect channel and finite load conditions shows original results and leads to new conclusions that could not be intuitively expected.

[1]  Andreas Mitschele-Thiel,et al.  Collision reduction mechanism for masked node problem in ad hoc networks , 2009 .

[2]  Samir Kouro,et al.  Unidimensional Modulation Technique for Cascaded Multilevel Converters , 2009, IEEE Transactions on Industrial Electronics.

[3]  A. Krishnan,et al.  Throughput analysis of IEEE 802.11 multirate WLANs with collision aware rate adaptation algorithm , 2010, Int. J. Autom. Comput..

[4]  Senthilkumar Dhanasekaran,et al.  Enhancement to IEEE 802.11 Distributed Coordination Function to Reduce Packet Retransmissions Under Imperfect Channel Conditions , 2012, Wirel. Pers. Commun..

[5]  Hamid Sharif,et al.  Performance Study of a Mobile Multi-hop 802.11a/b Railway Network Using Passive Measurement , 2009, Mob. Networks Appl..

[6]  Jonathan Loo,et al.  Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks , 2011, Sensors.

[7]  Suresh Subramaniam,et al.  Analytical Models for Single-Hop and Multi-Hop Ad Hoc Networks , 2004, First International Conference on Broadband Networks.

[8]  Zoran Hadzi-Velkov,et al.  Capture effect in IEEE 802.11 basic service area under influence of Rayleigh fading and near/far effect , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[9]  Nobuyoshi Komuro,et al.  Analytical Expression of Maximum Throughput for Long-Frame Communications in One-way String Wireless Multihop Networks , 2011, Wirel. Pers. Commun..

[10]  Seung-Woo Seo,et al.  Novel collision detection scheme and its applications for IEEE 802.11 wireless LANs , 2007, Comput. Commun..

[11]  Dong Zhu,et al.  Performance analysis of CSMA in an unslotted cognitive radio network with licensed channels and unlicensed channels , 2012, EURASIP J. Wirel. Commun. Netw..

[12]  Zhi-Hong Mao,et al.  Throughput behavior of link adaptive 802.11 DCF with MUD capable access node , 2010 .

[13]  Chih-Yu Wang,et al.  IEEE 802.11n MAC Enhancement and Performance Evaluation , 2009, Mob. Networks Appl..

[14]  Vikram Krishnamurthy,et al.  A Price Based Decentralized Rate Selection in IEEE 802.11 Based WLANS , 2011, Wirel. Pers. Commun..

[15]  Jesus Alonso-Zarate,et al.  Distributed point coordination function for IEEE 802.11 wireless ad hoc networks , 2012, Ad Hoc Networks.

[16]  A. Krishnan,et al.  Throughput analysis of the IEEE 802.11 distributed coordination function considering erroneous channel and capture effects , 2011, Int. J. Autom. Comput..

[17]  Wei Song,et al.  Adaptive Packetization for Conversational Video Service over IEEE 802.11 WLANs with Hidden Terminals , 2011, Wirel. Pers. Commun..

[18]  Vasileios Vitsas,et al.  Packet Delay Metrics for IEEE 802.11 Distributed Coordination Function , 2009, Mob. Networks Appl..

[19]  Sheng-Tzong Cheng,et al.  Adaptive coordination function for IEEE 802.11 wireless LANs , 2007, Wirel. Pers. Commun..

[20]  Arturo Azcorra,et al.  A Throughput and Delay Model for IEEE 802.11e EDCA Under Non Saturation , 2007, Wirel. Pers. Commun..

[21]  Vladimir M. Vishnevsky,et al.  Comparative Study of 802.11 DCF and its Modification in the Presence of Noise , 2005, Wirel. Networks.

[22]  Kai-Ten Feng,et al.  Design of MAC-defined aggregated ARQ schemes for IEEE 802.11n networks , 2011, Wirel. Networks.

[23]  Wei Song,et al.  Editorial: Adaptive Communication in Wireless Networks , 2011, Wirel. Pers. Commun..

[24]  Chien-Erh Weng,et al.  The Performance Evaluation of IEEE 802.11e for QoS Support in Wireless LANs , 2013, Wirel. Pers. Commun..

[25]  Senthilkumar Dhanasekaran,et al.  Nonsaturation throughput enhancement of IEEE 802.11b distributed coordination function for heterogeneous traffic under noisy environment , 2010, Int. J. Autom. Comput..

[26]  Zhong Fan,et al.  Throughput and QoS optimization for EDCA-based IEEE 802.11 WLANs , 2007, Wirel. Pers. Commun..

[27]  Frank H. P. Fitzek,et al.  Guest Editorial: Special Issue on Advances on Wireless LANs and PANs , 2005, Wirel. Pers. Commun..

[28]  David Malone,et al.  Aggregation With Fragment Retransmission for Very High-Speed WLANs , 2009, IEEE/ACM Transactions on Networking.

[29]  Nasser Yazdani,et al.  Effect of the contention window size on performance and fairness of the IEEE 802.11 standard , 2007, Wirel. Pers. Commun..

[30]  Yang Xiao,et al.  ACM/Springer Mobile Networks and Applications (MONET) Special Issue on “Recent Advances in IEEE 802.11 WLANs: Protocols, Solutions and Future Directions” , 2009, Mob. Networks Appl..

[31]  Alberto Blanc,et al.  Urban 802.11 Community Networks for Mobile Users: Current Deployments and Prospectives , 2012, Mob. Networks Appl..

[32]  Wonjung Kim,et al.  A Cross-Layer Approach to Reduce Channel Access Delay Jitter in IEEE 802.11 WLANs , 2013, Wirel. Pers. Commun..

[33]  Xin Liu,et al.  Performance of IEEE 802.11 under Jamming , 2013, Mob. Networks Appl..

[34]  Jeffrey B. Carruthers,et al.  Collision Localization for IEEE 802.11 Wireless LANs , 2012, Wirel. Pers. Commun..

[35]  Maode Ma,et al.  Packet delay analysis on IEEE 802.11 DCF under finite load traffic in multi-hop ad hoc networks , 2008, Science in China Series F: Information Sciences.

[36]  Anders Lindgren,et al.  Quality of Service Schemes for IEEE 802.11 Wireless LANs – An Evaluation , 2003, Mob. Networks Appl..

[37]  Yanghee Choi,et al.  Multicasting multimedia streams in IEEE 802.11 networks: a focus on reliability and rate adaptation , 2011, Wirel. Networks.

[38]  Jean C. Walrand,et al.  Approaching Throughput-Optimality in Distributed CSMA Scheduling Algorithms With Collisions , 2010, IEEE/ACM Transactions on Networking.

[39]  Milan Moravec The Performance Evaluation , 1983 .

[40]  Luc Martens,et al.  Path loss model and prediction of range, power and throughput for 802.11n in large conference rooms , 2012 .

[41]  Vladimir M. Vishnevsky,et al.  IEEE 802.11 Wireless LAN: Saturation Throughput Analysis with Seizing Effect Consideration , 2002, Cluster Computing.

[42]  Li Yun,et al.  A Novel Random Backoff Algorithm to Enhance the Performance of IEEE 802.11 DCF , 2006 .

[43]  Xiangyu Peng,et al.  Saturation throughput analysis of RTS/CTS scheme in an error-prone WLAN channel , 2009 .

[44]  Young-Joo Suh,et al.  A Robust and Cooperative MAC Protocol for IEEE 802.11a Wireless Networks , 2012, Wirel. Pers. Commun..

[45]  Hussein M. Alnuweiri,et al.  A Generalized Saturation Throughput Analysis for IEEE 802.11e Contention-Based MAC , 2008, Wirel. Pers. Commun..

[46]  Krzysztof Szczypiorski,et al.  Saturation throughput analysis of IEEE 802.11g (ERP-OFDM) networks , 2008, PWC.

[47]  Mahmoud T. El-Hadidi,et al.  Performance evaluation of IEEE 802.11-based wireless LANs under finite-load conditions , 2008 .

[48]  Adam Wolisz,et al.  Performance study of access control in wireless LANs – IEEE 802.11 DFWMAC and ETSI RES 10 Hiperlan , 1997, Mob. Networks Appl..

[49]  Hyuk Lim,et al.  Sequential Coordination Function for Throughput and Fairness Enhancement of Wireless LANs , 2012, Wirel. Pers. Commun..

[50]  Fu-Yi Hung,et al.  Performance analysis of the IEEE 802.11 DCF in the presence of the hidden stations , 2010, Comput. Networks.

[51]  Peter Steenkiste,et al.  Characterizing 802.11 wireless link behavior , 2010, Wirel. Networks.

[52]  Andrey Lyakhov,et al.  Matrix method to study IEEE 802.11 network , 2008 .

[53]  Haider M. AlSabbagh,et al.  Influence of the Limited Retransmission on the Performance of WLANs Using Error-Prone Channel , 2008, Int. J. Commun. Netw. Syst. Sci..

[54]  Maher Ben Jemaa,et al.  Experimental Performance Evaluation and Frame Aggregation Enhancement in IEEE 802.11n WLANs , 2013, Int. J. Commun. Networks Inf. Secur..

[55]  Takefumi Hiraguri,et al.  Queuing Scheme for Improved Downlink Throughput on WLANs , 2013, Wirel. Pers. Commun..

[56]  David Malone,et al.  Measuring Transmission Opportunities in 802.11 Links , 2010, IEEE/ACM Transactions on Networking.

[57]  Mário Serafim Nunes,et al.  Performance evaluation of IEEE 802.11e , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[58]  P. Kumar,et al.  Nonsaturation throughput analysis of IEEE 802.11 distributed coordination function , 2008, 2008 International Conference on Electrical and Computer Engineering.

[59]  Kleber Vieira Cardoso,et al.  Increasing throughput in dense 802.11 networks by automatic rate adaptation improvement , 2012, Wirel. Networks.

[60]  Subramaniam Shamala,et al.  An Enhanced A-MSDU Frame Aggregation Scheme for 802.11n Wireless Networks , 2012, Wirel. Pers. Commun..

[61]  Wen-Tzu Chen,et al.  An effective medium contention method to improve the performance of IEEE 802.11 , 2008, Wirel. Networks.

[62]  Vidhyacharan Bhaskar,et al.  Performance analysis of MIMO–OFDM in various outdoor fading environments , 2012 .

[63]  Andreas Willig,et al.  Measurements of a wireless link in an industrial environment using an IEEE 802.11-compliant physical layer , 2002, IEEE Trans. Ind. Electron..

[64]  LiYun,et al.  Modeling Channel Access Delay and Jitter of IEEE 802.11 DCF , 2008 .

[65]  Peter P. Pham,et al.  Comprehensive Analysis of the IEEE 802.11 , 2005, Mob. Networks Appl..

[66]  Christian Bonnet,et al.  Optimal Constant-Window Backoff Scheme for IEEE 802.11 DCF in Single-Hop Wireless Networks Under Finite Load Conditions , 2007, Wirel. Pers. Commun..

[67]  Neeli R. Prasad,et al.  Performance Evaluation, System Design and Network Deployment of IEEE 802.11 , 2001, Wirel. Pers. Commun..

[68]  Aphirak Jansang,et al.  A Simple Analytical Model for Expected Frame Waiting Time Evaluation in IEEE 802.11e HCCA Mode , 2012, Wireless Personal Communications.

[69]  Jonathan Loo,et al.  Comparison of IEEE 802.11 and IEEE 802.15.4 for Future Green Multichannel Multi-radio Wireless Sensor Networks , 2011, Int. J. Commun. Networks Inf. Secur..

[70]  D. Malone,et al.  Modeling the 802.11 Distributed Coordination Function in Nonsaturated Heterogeneous Conditions , 2007, IEEE/ACM Transactions on Networking.