Non-Orthomodular Models for Both Standard Quantum Logic and Standard Classical Logic: Repercussions for Quantum Computers
暂无分享,去创建一个
[1] C. Ross. Found , 1869, The Dental register.
[2] Emil L. Post. Introduction to a General Theory of Elementary Propositions , 1921 .
[3] D. Hilbert,et al. Principles of Mathematical Logic , 1950 .
[4] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[5] Ernst-Walther Stachow. Completeness of quantum logic , 1976, J. Philos. Log..
[6] H. Dishkant,et al. Logic of Quantum Mechanics , 1976 .
[7] Logikkalküle der Quantenphysik , 1977 .
[8] Gary M. Hardegree. The Conditional in Abstract and Concrete Quantum Logic , 1979 .
[9] Ladislav Beran,et al. Orthomodular Lattices: Algebraic Approach , 1985 .
[11] M. Pavicic. Unified quantum logic , 1989 .
[12] Hugues Leblanc,et al. Alternatives to Standard First-Order Semantics , 1989 .
[13] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[14] M. Pavicic,et al. Nonordered quantum logic and its YES-NO representation , 1993 .
[15] S. Holland,et al. Orthomodularity in infinite dimensions; a theorem of M. Solèr , 1995 .
[16] Barenco,et al. Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[17] Renatus Ziegler,et al. On the Foundations of Set Theory , 1996 .
[18] Quantum and Classical Implication Algebras with Primitive Implications , 1998 .
[19] Identity Rule for Classical and Quantum Theories , 1998 .
[20] Norman D. Megill,et al. BINARY ORTHOLOGIC WITH MODUS PONENS IS EITHER ORTHOMODULAR OR DISTRIBUTIVE , 1998 .
[21] Karl Svozil,et al. Quantum Logic , 1998, Discrete mathematics and theoretical computer science.