A validated model for the simulation of protein purification through affinity membrane chromatography.

A mathematical model is proposed for the description of protein purification through membrane affinity chromatography. The model describes all the three stages of the chromatographic cycle and takes into account convection, axial dispersion and binding reaction kinetics in the porous membrane matrix, while boundary layer mass transfer resistance is shown to be negligible. All the model parameters have a precise physical meaning which enables their evaluation through separate experimental measurements, independent of the chromatographic cycle. Model testing and validation has been performed with experimental chromatographic cycles carried out with pure IgG solutions as well as with complex mixtures containing IgG(1), using new affinity membranes. The comparison between model calculations and experimental data showed good agreement for all stages of the affinity cycle. In particular, for loading and washing steps binding kinetics was found so fast that adsorption equilibrium was sufficient to describe the observed behavior; as a result, the model simulations are entirely predictive for the adsorption and washing phases. On the contrary, in the elution step the reaction rate is comparable to that of the other simultaneous transport phenomena. The model is able to predict the performance of chromatographic purification of IgG from complex mixtures simply on the basis of the parameter values obtained from pure IgG solutions.

[1]  H. Zou,et al.  Affinity membrane chromatography for the analysis and purification of proteins. , 2001, Journal of biochemical and biophysical methods.

[2]  Miroslav Kubín,et al.  Beitrag zur theorie der chromatographie II. Einfluss der diffusion ausserhalb und der adsorption innerhalb des sorbens-korns , 1965 .

[3]  Irving Langmuir,et al.  The constitution and fundamental properties of solids and liquids. Part II.—Liquids , 1917 .

[4]  E. Ruckenstein,et al.  Membrane Chromatography: Preparation and Applications to Protein Separation , 1999, Biotechnology progress.

[5]  A. Shiosaki,et al.  Frontal analysis of protein adsorption on a membrane adsorber. , 1994, Journal of chromatography. A.

[6]  R. Carbonell,et al.  Transport and binding characterization of a novel hybrid particle impregnated membrane material for bioseparations , 2011, Biotechnology progress.

[7]  P. Viot,et al.  From car parking to protein adsorption: an overview of sequential adsorption processes , 1999, cond-mat/9906428.

[8]  J. Fried,et al.  Breakthrough of lysozyme through an affinity membrane of cellulose‐cibacron blue , 1994 .

[9]  R. Guzman,et al.  Mathematical analysis of frontal affinity chromatography in particle and membrane configurations. , 2001, Journal of biochemical and biophysical methods.

[10]  R. Guzman,et al.  Breakthrough Performance of Plasmid DNA on Ion‐Exchange Membrane Columns , 2007, Biotechnology progress.

[11]  F. Arnold,et al.  Analysis of affinity separations II: The characterization of affinity columns by pulse techniques , 1985 .

[12]  G. S. Wilson,et al.  Chromatographic properties of silica-immobilized antibodies. , 1980, Analytical chemistry.

[13]  E. Kucera,et al.  Contribution to the theory of chromatography: linear non-equilibrium elution chromatography. , 1965, Journal of chromatography.

[14]  Krzysztof Kaczmarski,et al.  Application of the general rate model and the generalized Maxwell-Stefan equation to the study of the mass transfer kinetics of a pair of enantiomers. , 2002, Journal of chromatography. A.

[15]  M. Etzel,et al.  Mass transfer limitations in protein separations using ion-exchange membranes. , 1996, Journal of chromatography. A.

[16]  Alois Jungbauer,et al.  Insights into the chromatography of proteins provided by mathematical modeling , 1996 .

[17]  E. Klein Affinity membranes: a 10-year review , 2000 .

[18]  D. J. Gunn,et al.  Axial and radial dispersion in fixed beds , 1987 .

[19]  G. C. Sarti,et al.  Influence of different spacer arms on Mimetic Ligand™ A2P and B14 membranes for human IgG purification. , 2011, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[20]  Duncan Low,et al.  Future of antibody purification. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[21]  Andreas Seidel-Morgenstern,et al.  Experimental determination of single solute and competitive adsorption isotherms. , 2004, Journal of chromatography. A.

[22]  A. I. Liapis,et al.  Theoretical aspects of affinity chromatography , 1989 .

[23]  P. Blond,et al.  Purification of immunoglobulins G by protein A/G affinity membrane chromatography. , 1999, Journal of chromatography. B, Biomedical sciences and applications.

[24]  J. Talbot,et al.  Analysis of steric hindrance effects on adsorption kinetics and equilibria , 1994 .

[25]  Raja Ghosh,et al.  Protein separation using membrane chromatography: opportunities and challenges. , 2002, Journal of chromatography. A.

[26]  L. Lerman,et al.  A Biochemically Specific Method for Enzyme Isolation. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Weiqiang Hao,et al.  Kinetic Study of the Mass Transfer of Bovine Serum Albumin on Cibacron Blue Cellulose Membranes by Using the Multi-Plate and Transport Models , 2005 .

[28]  A. Jungbauer,et al.  Dispersion effects in preparative polymethacrylate monoliths operated in radial-flow columns. , 2007, Journal of biochemical and biophysical methods.

[29]  D. Frey,et al.  Dispersion in stacked-membrane chromatography , 1992 .

[30]  Jens Abildskov,et al.  Lumped parameter model for prediction of initial breakthrough profiles for the chromatographic capture of antibodies from a complex feedstock. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[31]  S. Cramer,et al.  Membrane chromatographic systems for high-throughput protein separations , 1992 .

[32]  S. Suen,et al.  Sorption kinetics and breakthrough curves for pepsin and chymosin using pepstatin A affinity membranes. , 1994, Journal of chromatography. A.

[33]  A. Górak,et al.  Computer-aided process design of affinity membrane adsorbers: a case study on antibodies capturing , 2008 .

[34]  G. C. Sarti,et al.  Performance of a New Protein A Affinity Membrane for the Primary Recovery of Antibodies , 2008, Biotechnology progress.

[35]  M. Etzel,et al.  Purification of Bovine Immunoglobulin G via Protein G Affinity Membranes , 1996 .

[36]  Wolf-Dieter Deckwer,et al.  Comparison of affinity membranes for the purification of immunoglobulins , 2002 .

[37]  John M. Walker,et al.  The Protein Protocols Handbook , 2009, Springer Protocols Handbooks.

[38]  Mark R. Etzel,et al.  Purification of a large protein using ion-exchange membranes , 2002 .

[39]  Weiqiang Hao,et al.  Mass transfer kinetics and breakthrough and elution curves for bovine serum albumin using cibacron blue cellulose membranes. , 2006, Journal of chromatography. A.

[40]  A. Lenhoff Significance and estimation of chromatographic parameters , 1987 .

[41]  M. Kula,et al.  Fast protein chromatography on analytical and preparative scale using modified microporous membranes , 1992 .

[42]  P. V. Danckwerts Continuous flow systems , 1953 .

[43]  S. Suen,et al.  A mathematical analysis of affinity membrane bioseparations , 1992 .

[44]  Frances H. Arnold,et al.  Analysis of affinity separations: I: Predicting the performance of affinity adsorbers , 1985 .

[45]  Dudley Brian Spalding,et al.  A note on mean residence-times in steady flows of arbitrary complexity , 1958 .

[46]  C. Vidal-madjar,et al.  Frontal analysis for characterizing the adsorption-desorption behavior of beta-lactoglobulin on immunoadsorbents. , 2006, Journal of chromatography. A.

[47]  E. Klein Affinity Membranes: Their Chemistry and Performance in Adsorptive Separation Processes , 1991 .

[48]  Klaus Huse,et al.  Purification of antibodies by affinity chromatography. , 2002, Journal of biochemical and biophysical methods.

[49]  Ruben G Carbonell,et al.  Characterization of a peptide affinity support that binds selectively to staphylococcal enterotoxin B. , 2005, Journal of chromatography. A.

[50]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[51]  M. Etzel,et al.  Evaluation of an ion‐exchange membrane for the purification of plasmid DNA , 2003, Biotechnology and applied biochemistry.

[52]  M. T. Tyn,et al.  Prediction of diffusion coefficients of proteins , 1990, Biotechnology and bioengineering.

[53]  G. C. Sarti,et al.  Modelling and simulation of affinity membrane adsorption. , 2007, Journal of chromatography. A.

[54]  C. Wen,et al.  Longitudinal dispersion of liquid flowing through fixed and fluidized beds , 1968 .

[55]  S. Wickramasinghe,et al.  Elimination of non-uniform, extra-device flow effects in membrane adsorbers , 2009 .

[56]  M. Kula,et al.  Breakthrough performance of high-capacity membrane adsorbers in protein chromatography , 1997 .

[57]  E. Lightfoot,et al.  Estimating plate heights in stacked-membrane chromatography by flow reversal , 1995 .

[58]  Krzysztof Kaczmarski,et al.  Measurement of intraparticle diffusion in reversed phase liquid chromatography , 2004 .

[59]  A. Liapis,et al.  Modeling and analysis of elution stage of biospecific adsorption in finite bath , 1988, Biotechnology and bioengineering.

[60]  Anita M. Katti,et al.  Fundamentals of Preparative and Nonlinear Chromatography , 1994 .

[61]  Georges Guiochon,et al.  Preparative liquid chromatography. , 2002, Journal of chromatography. A.

[62]  H. Chase Affinity separations utilising immobilised monoclonal antibodies—a new tool for the biochemical engineer , 1984 .

[63]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .

[64]  G. Guiochon,et al.  Determination of the lumped mass transfer rate coefficient by frontal analysis. , 2000, Journal of chromatography. A.

[65]  Jun Wang,et al.  Detailed analysis of membrane adsorber pore structure and protein binding by advanced microscopy , 2008 .