Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries

[1]  F. Du,et al.  Synthesis of Ti2CT MXene as electrode materials for symmetric supercapacitor with capable volumetric capacitance , 2019, Journal of Energy Chemistry.

[2]  Yingying Zhang,et al.  MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries , 2019, Journal of Materials Chemistry A.

[3]  Kai Zhu,et al.  Superior high rate capability of MgMn2O4/rGO nanocomposites as cathode materials for aqueous rechargeable magnesium ion batteries. , 2018, Chemical communications.

[4]  P. Voyles,et al.  H2V3O8 Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity , 2018 .

[5]  F. Vullum-Bruer,et al.  High capacity Mg batteries based on surface-controlled electrochemical reactions , 2018 .

[6]  B. Li,et al.  Ultrafast Zn2+ Intercalation and Deintercalation in Vanadium Dioxide , 2018, Advanced materials.

[7]  Weifeng Huang,et al.  Three-dimensional hollow spheres of the tetragonal-spinel MgMn2O4 cathode for high-performance magnesium ion batteries , 2018 .

[8]  R. Palgrave,et al.  Aerosol-assisted chemical vapor deposition of V2O5 cathodes with high rate capabilities for magnesium-ion batteries , 2018 .

[9]  Y. Oaki,et al.  Enhanced electrochemical properties of MgCo2O4 mesocrystals as a positive electrode active material for Mg batteries , 2018 .

[10]  S. Shi,et al.  Opening Magnesium Storage Capability of Two-Dimensional MXene by Intercalation of Cationic Surfactant. , 2018, ACS nano.

[11]  A. Erbe,et al.  High Interfacial Charge Storage Capability of Carbonaceous Cathodes for Mg Batteries. , 2018, ACS nano.

[12]  David Prendergast,et al.  Reversible Mg-Ion Insertion in a Metastable One-Dimensional Polymorph of V2O5 , 2018 .

[13]  C. Grey,et al.  Structural Characterization of the Li-Ion Battery Cathode Materials LiTixMn2–xO4 (0.2 ≤ x ≤ 1.5): A Combined Experimental 7Li NMR and First-Principles Study , 2017 .

[14]  Yan Yao,et al.  An Aqueous Ca‐Ion Battery , 2017, Advanced science.

[15]  Prashanth H. Jampani,et al.  A rapid solid-state synthesis of electrochemically active Chevrel phases (Mo6T8; T = S, Se) for rechargeable magnesium batteries , 2017, Nano Research.

[16]  K. Ye,et al.  Assembly of Aqueous Rechargeable Magnesium Ions Battery Capacitor: The Nanowire Mg-OMS-2/Graphene as Cathode and Activated Carbon as Anode , 2017 .

[17]  P. D. Tran,et al.  Unravelling the Surface Structure of MgMn2O4 Cathode Materials for Rechargeable Magnesium-Ion Battery , 2017 .

[18]  Kuan-Yi Lee,et al.  Universal quinone electrodes for long cycle life aqueous rechargeable batteries. , 2017, Nature materials.

[19]  Shuangxi Shao,et al.  Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery , 2017 .

[20]  Rahul Malik,et al.  Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. , 2017, Chemical reviews.

[21]  Yanhong Yin,et al.  Synthesis of Vesicle-Like MgFe2O4/Graphene 3D Network Anode Material with Enhanced Lithium Storage Performance , 2017 .

[22]  Anubhav Jain,et al.  Evaluation of sulfur spinel compounds for multivalent battery cathode applications , 2016 .

[23]  F. Vullum-Bruer,et al.  Sponge-Like Porous Manganese(II,III) Oxide as a Highly Efficient Cathode Material for Rechargeable Magnesium Ion Batteries , 2016 .

[24]  Linda F. Nazar,et al.  A high capacity thiospinel cathode for Mg batteries , 2016 .

[25]  Xinhua Liang,et al.  Employing Synergetic Effect of Doping and Thin Film Coating to Boost the Performance of Lithium-Ion Battery Cathode Particles , 2016, Scientific Reports.

[26]  Sang Bok Lee,et al.  Mapping the Challenges of Magnesium Battery. , 2016, The journal of physical chemistry letters.

[27]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[28]  W. Chu,et al.  On the drastically improved performance of Fe - doped LiMn2O4 nanoparticles prepared by a facile solution - gelation route , 2015 .

[29]  F. Kang,et al.  Secondary batteries with multivalent ions for energy storage , 2015, Scientific Reports.

[30]  J. Muldoon,et al.  Confession of a Magnesium Battery. , 2015, The journal of physical chemistry letters.

[31]  F. Du,et al.  Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries. , 2015, Nanoscale.

[32]  T. Doi,et al.  Intercalation and Push‐Out Process with Spinel‐to‐Rocksalt Transition on Mg Insertion into Spinel Oxides in Magnesium Batteries , 2015, Advanced science.

[33]  Matthew M. Huie,et al.  Cathode materials for magnesium and magnesium-ion based batteries , 2015 .

[34]  J. Muldoon,et al.  Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. , 2014, Chemical reviews.

[35]  Guoying Chen,et al.  Relationships between Mn3+ Content, Structural Ordering, Phase Transformation, and Kinetic Properties in LiNixMn2–xO4 Cathode Materials , 2014 .

[36]  Jinghua Guo,et al.  Understanding the electrochemical mechanism of K-αMnO2 for magnesium battery cathodes. , 2014, ACS applied materials & interfaces.

[37]  S. Piraman,et al.  Electrochemical behavior of LiMn2−X−YTiXFeYO4 as cathode material for Lithium ion batteries , 2014 .

[38]  Bin Liu,et al.  Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. , 2013, ACS nano.

[39]  Chinwe O. Ikpo,et al.  Transition metal alloy-modulated lithium manganese oxide nanosystem for energy storage in lithium-ion battery cathodes , 2013 .

[40]  Chonglin Song,et al.  Promoting effect of zirconium doping on Mn/ZSM-5 for the selective catalytic reduction of NO with NH3 , 2013 .

[41]  G. Lindbergh,et al.  Electrochemical properties of nanocrystalline LiFexMn2−xO4 (x = 0.2–1.0) cathode particles prepared by ultrasonic spray pyrolysis method , 2012 .

[42]  Xin Wang,et al.  Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach. , 2011, Nanoscale.

[43]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[44]  Lei Tian,et al.  Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte , 2010 .

[45]  Jiulin Wang,et al.  Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. , 2010, Chemical communications.

[46]  Q. Huang,et al.  A study on insertion/removal kinetics of lithium ion in LiCrxMn2−xO4 by using powder microelectrode , 2007 .

[47]  Jianjun Li,et al.  Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries , 2005 .

[48]  Masaru Miyayama,et al.  Mg Intercalation Properties into V 2 O 5 gel/Carbon Composites under High-Rate Condition , 2003 .

[49]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[50]  A. Marschilok,et al.  Communication—Sol-Gel Synthesized Magnesium Vanadium Oxide, MgxV2O5 · nH2O: The Role of Structural Mg2+ on Battery Performance , 2016 .

[51]  R. Ravikumar,et al.  Molybdenum doped spinel as cathode material for lithium rechargeable cells , 2012 .