ABYSS - A bathymetric altimeter for the International Space Station

† Copyright © 2001 by the American Institute of Aeronautics and Astronautics, Inc. Under the copyright claimed herein, the U. S. Government has a royalty-free license to exercise all rights of use in future works of their own; and JHU/APL reserves the right to make copies for its own use, but not for sale. All other rights are reserved by the copyright owner. ABSTRACT ABYSS (Altimetric BathymetrY from Surface Slopes) will map the ocean floor 100 times faster and cheaper than ships can, by using a state-of-the-art delay-Doppler radar altimeter on board the International Space Station. The ISS orbit is nearly ideal for this application, and the advanced altimeter is tolerant of platform motions. The altimeter can see subtle tilts in the ocean surface caused by seafloor topography. Bathymetric depth and roughness control the circulation and mixing of heat through the ocean, which in turn controls climate. Only 0.1% of the deep ocean has been mapped in enough detail so far. ABYSS will complete this survey over 80% of the world’s oceans.

[1]  L. S. Laurent,et al.  The Role of Internal Tides in Mixing the Deep Ocean , 2002 .

[2]  S. G. L. Smith,et al.  Conversion of the Barotropic Tide , 2002 .

[3]  W. Munk,et al.  Millennial Climate Variability: Is There a Tidal Connection? , 2002 .

[4]  D. Stammer,et al.  On the mid‐depth circulation in the Labrador and Irminger Seas , 2001 .

[5]  R. Lien,et al.  Observations of turbulence in a tidal beam and across a coastal ridge , 2001 .

[6]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[7]  Walter H. F. Smith,et al.  Chapter 12 Bathymetric Estimation , 2001 .

[8]  M. Maltrud,et al.  Numerical simulation of the North Atlantic Ocean at 1/10 degrees , 2000 .

[9]  G. D. Egbert,et al.  Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.

[10]  D. Sandwell,et al.  Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry , 2000 .

[11]  C. D. Keeling,et al.  The 1,800-year oceanic tidal cycle: a possible cause of rapid climate change. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Toole,et al.  Evidence for enhanced mixing over rough topography in the abyssal ocean , 2000, Nature.

[13]  Influences of Topography on the Modeling of Abyssal Water Masses. Part I: Effects of Channel Representation , 1999 .

[14]  J. R. Jensen Angle measurement with a phase monopulse radar altimeter , 1999 .

[15]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[16]  R. Keith Raney,et al.  The delay/Doppler radar altimeter , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  R. K. Raney,et al.  Delay/Doppler radar altimeter: better measurement precision , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[18]  K. Speer,et al.  Transport of Bottom Water in the Romanche Fracture Zone and the Chain Fracture Zone , 1998 .

[19]  A. Adcroft,et al.  Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .

[20]  C. D. Keeling,et al.  Possible forcing of global temperature by the oceanic tides. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Lueck,et al.  Topographically Induced Mixing Around a Shallow Seamount , 1997 .

[22]  Walter H. F. Smith,et al.  Marine gravity anomaly from Geosat and ERS 1 satellite altimetry , 1997 .

[23]  J. M. Toole,et al.  Spatial Variability of Turbulent Mixing in the Abyssal Ocean , 1997, Science.

[24]  D. Sandwell,et al.  Global seafloor topography from dense satellite altimetry and sparse ship soundings , 1997 .

[25]  H. Ondréas,et al.  Morphological reorganization within the Pacific-Antarctic Discordance , 1996 .

[26]  G. Balmino,et al.  Gravity anomalies from satellite altimetry: comparison between computation via geoid heights and via deflections of the vertical , 1995 .

[27]  Walter H. F. Smith,et al.  Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry , 1994 .

[28]  J. Dukowicz,et al.  Implicit free‐surface method for the Bryan‐Cox‐Semtner ocean model , 1994 .

[29]  D. Sandwell,et al.  Imaging mid-ocean ridge transitions with satellite gravity , 1994 .

[30]  J. Morgan,et al.  Dependence of ridge-axis morphology on magma supply and spreading rate , 1993, Nature.

[31]  Walter H. F. Smith On the accuracy of digital bathymetric data , 1993 .

[32]  J. Morgan,et al.  The genesis of oceanic crust: Magma injection, hydrothermal circulation, and crustal flow , 1993 .

[33]  David T. Sandwell,et al.  Antarctic marine gravity field from high-density satellite altimetry , 1992 .

[34]  D. Sandwell,et al.  An analysis of ridge axis gravity roughness and spreading rate , 1992 .

[35]  John A. Goff,et al.  A global and regional stochastic analysis of near-ridge abyssal hill morphology , 1991 .

[36]  K. Kelly The meandering Gulf Stream as seen by the Geosat altimeter: Surface transport, position, and velocity variance from 73° to 46°W , 1991 .

[37]  W. J. Morgan,et al.  A nonlinear rheology model for mid‐ocean ridge axis topography , 1990 .

[38]  W. J. Morgan,et al.  Rift valley/no rift valley transition at mid‐ocean ridges , 1990 .

[39]  David T. Sandwell,et al.  Global mesoscale variability from the Geosat Exact Repeat Mission - Correlation with ocean depth , 1989 .

[40]  D. Sandwell,et al.  An abrupt change in ridge axis gravity with spreading rate , 1989 .

[41]  Charles C. Kilgus,et al.  Evolution of the satellite radar altimeter , 1989 .

[42]  Thomas H. Jordan,et al.  Stochastic Modeling of Seafloor Morphology: Inversion of Sea Beam Data for Second-Order Statistics , 1988 .

[43]  J. Minster,et al.  Brunt-Väisälä Frequency and Rossby Radii in the South Atlantic , 1987 .

[44]  R. Raney Doppler properties of radars in circular orbits , 1986 .

[45]  D. Sandwell A detailed view of the South Pacific geoid from satellite altimetry , 1984 .

[46]  J. L. LaBrecque,et al.  Digital images of combined oceanic and continental data sets and their use in tectonic studies , 1983 .

[47]  Timothy H. Dixon,et al.  Bathymetric prediction from Seasat altimeter data , 1983 .

[48]  J. R. Cochran An analysis of isostasy in the world's oceans: 2. Midocean ridge crests , 1979 .

[49]  A. Watts An analysis of Isostasy in the World''s Oceans 1 , 1978 .

[50]  C. Garrett,et al.  The 18.6‐year cycle of sea surface temperature in shallow seas due to variations in tidal mixing , 1978 .

[51]  T. H. Bell,et al.  Lee waves in stratified flows with simple harmonic time dependence , 1975, Journal of Fluid Mechanics.

[52]  Robert L. Parker,et al.  The Rapid Calculation of Potential Anomalies , 1973 .