Numerical Approximation of Blow-Up of Radially Symmetric Solutions of the Nonlinear Schrödinger Equation

We consider the initial-value problem for the radially symmetric nonlinear Schrodin\-ger equation with cubic nonlinearity (NLS) in d=2 and 3 space dimensions. To approximate smooth solutions of this problem, we construct and analyze a numerical method based on a standard Galerkin finite element spatial discretization with piecewise linear, continuous functions and on an implicit Crank--Nicolson type time-stepping procedure. We then equip this scheme with an adaptive spatial and temporal mesh refinement mechanism that enables the numerical technique to approximate well singular solutions of the NLS equation that blow up at the origin as the temporal variable t tends from below to a finite value $t^\star$. For the blow-up of the amplitude of the solution we recover numerically the well-known rate $(t^\star - t)^{-1/2}$ for d=3. For d=2 our numerical evidence supports the validity of the $\log \log$ law $[\ln\ln \frac {1}{t^\star -t} /(t^\star-t)]^{1/2}$ for t extremely close to $t^\star.$ The scheme also approximates well the details of the blow-up of the phase of the solution at the origin as $t\to t^\star.$

[1]  Papanicolaou,et al.  Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. , 1988, Physical review. A, General physics.

[2]  Alexander M. Rubenchik,et al.  Hamiltonian approach to the description of non-linear plasma phenomena , 1985 .

[3]  J. Juul Rasmussen,et al.  Blow-up in Nonlinear Schrodinger Equations , 1989 .

[4]  E. Garmire,et al.  Self-trapping of optical beams , 1966 .

[5]  Catherine Sulem,et al.  Local structure of the self-focusing singularity of the nonlinear Schro¨dinger equation , 1988 .

[6]  Frank Merle,et al.  Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations. , 1998 .

[7]  R. Kohn,et al.  A rescaling algorithm for the numerical calculation of blowing-up solutions , 1988 .

[8]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[9]  Gadi Fibich,et al.  Self-Focusing in the Damped Nonlinear Schrödinger Equation , 2001, SIAM J. Appl. Math..

[10]  Michael Shearer Viscous profiles and numerical methods for shock waves , 1991 .

[11]  F. Smith,et al.  Conservative, high-order numerical schemes for the generalized Korteweg—de Vries equation , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[12]  Masayoshi Tsutsumi,et al.  Nonexistence of Global Solutions to the Cauchy Problem for the Damped Nonlinear Schrödinger Equations , 1984 .

[13]  Gadi Fibich,et al.  Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension , 1999, SIAM J. Appl. Math..

[14]  J. M. Sanz-Serna,et al.  Approximation of radial functions by piecewise polynomials onarbitrary grids , 1991 .

[15]  J. Ginibre,et al.  On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case , 1979 .

[16]  V. Malkin,et al.  On the analytical theory for stationary self-focusing of radiation , 1993 .

[17]  R. Russell,et al.  New Self-Similar Solutions of the Nonlinear Schrödinger Equation with Moving Mesh Computations , 1999 .

[18]  S. N. Vlasov,et al.  Structure of the field near a singularity arising from self-focusing in a cubically nonlinear medium , 1978 .

[19]  Papanicolaou,et al.  Focusing singularity of the cubic Schrödinger equation. , 1986, Physical review. A, General physics.

[20]  George Papanicolaou,et al.  Stability of isotropic singularities for the nonlinear schro¨dinger equation , 1991 .

[21]  Georgios Akrivis,et al.  GALERKIN–FINITE ELEMENT METHODS FOR THE NONLINEAR SCHRÖDINGER EQUATION , 1993 .

[22]  Walter A. Strauss,et al.  Nonlinear Wave Equations , 1990 .

[23]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[24]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[25]  G. M. Fraiman,et al.  The interaction representation in the self-focusing theory , 1991 .

[26]  Catherine Sulem,et al.  Focusing nonlinear Schro¨dinger equation and wave-packet collapse , 1997 .

[27]  Thierry Cazenave,et al.  Blow up and scattering in the nonlinear Schrödinger equation , 2022 .

[28]  Michael Shelley,et al.  A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method , 1992, Journal of Fluid Mechanics.

[29]  Vladimir E. Zakharov,et al.  Computer simulation of wave collapses in the nonlinear Schro¨dinger equation , 1991 .

[30]  David R. Wood The Self‐Focusing Singularity in the Nonlinear Schrödinger Equation , 1984 .

[31]  Société de mathématiques appliquées et industrielles,et al.  Introduction aux problèmes d'évolution semi-linéaires , 1990 .

[32]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[33]  J. M. Sanz-Serna,et al.  The Numerical Study of Blowup with Application to a Nonlinear Schrödinger Equation , 1992 .

[34]  Georgios Akrivis,et al.  Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods , 1997 .

[35]  G. Papanicolaou,et al.  The Focusing Singularity of the Nonlinear Schrödinger Equation , 1987 .

[36]  V. I. Talanov,et al.  Self Focusing of Wave Beams in Nonlinear Media , 1965 .

[37]  Kadanoff,et al.  Finite-time singularity formation in Hele-Shaw systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Georgios Akrivis,et al.  On optimal order error estimates for the nonlinear Schro¨dinger equation , 1993 .

[39]  Catherine Sulem,et al.  Numerical simulation of singular solutions to the two‐dimensional cubic schrödinger equation , 1984 .

[40]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[41]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[42]  Andrea L. Bertozzi,et al.  Singularities and similarities in interface flows , 1994 .

[43]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[44]  Y. Nakamura,et al.  On nonlinear Schrödinger equations with stark effect , 2002 .

[45]  Ohannes A. Karakashian,et al.  A Nonconforming Finite Element Method for the Stationary Navier--Stokes Equations , 1998 .

[46]  P. Robinson,et al.  Nonlinear wave collapse and strong turbulence , 1997 .

[47]  V. Zakharov Collapse of Langmuir Waves , 1972 .