A split-step Fourier method for the complex modified Korteweg-de Vries equation☆
暂无分享,去创建一个
[1] D. Pathria,et al. Pseudo-spectral solution of nonlinear Schro¨dinger equations , 1990 .
[2] T. Taha. Numerical simulations of the complex modified Korteweg-de Vries equation , 1994 .
[3] M. Suzuki,et al. General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .
[4] L. Ostrovsky,et al. Nonlinear vector waves in a mechanical model of a molecular chain , 1983 .
[5] Charles F. F. Karney,et al. Nonlinear evolution of lower hybrid waves , 1979 .
[6] H. Erbay. Nonlinear Transverse Waves in a Generalized Elastic Solid and the Complex Modified Korteweg–deVries Equation , 1998 .
[7] R. McLachlan. Symplectic integration of Hamiltonian wave equations , 1993 .
[8] Bengt Fornberg,et al. A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[9] E. Suhubi,et al. Nonlinear wave propagation in micropolar media—II. Special cases, solitary waves and Painlevé analysis , 1989 .
[10] T. Driscoll,et al. Regular Article: A Fast Spectral Algorithm for Nonlinear Wave Equations with Linear Dispersion , 1999 .
[11] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[12] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[13] Spectral methods and mappings for evolution equations on the infinite line , 1990 .
[14] Thiab R. Taha,et al. Analytical and numerical aspects of certain nonlinear evolution equations. 1V. numerical modified Korteweg-de Vries equation , 1988 .
[15] T. Taha,et al. Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation , 1984 .
[16] B. Herbst,et al. Numerical homoclinic instabilities and the complex modified Korteweg-de Vries equation , 1991 .
[17] B. Herbst,et al. Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .