Integrated water pollution assessment of the Ebrie Lagoon, Ivory Coast, West Africa

Abstract An environmental pollution assessment of the Ebrie lagoon, the largest coastal ecosystem in Western Africa, was executed by applying the Driving force-Pressure-State-Impacts-Response (DPSIR) framework. The domestic and industrial activities in Abidjan and agricultural activities in the wider catchment area were identified as the main driving forces. Two-thirds of Biological Oxygen Demand (BOD) loads and 95% of total nitrogen (N) and phosphorous (P) loads of Abidjan are from domestic effluents, with industry making up the rest. Outside of the direct influence of Abidjan, nutrient levels in the lagoon are governed by the influx of nutrients from the rivers Comoe, Me and Agneby, with nutrient land runoff as the key factors. Total annual N loads to the lagoon for 2000 are estimated at 33 kt, of which 45% from urban sources, 42% from land runoff and 13% from atmospheric deposition. Estimates for P are 2.5 kt, 39%, 48% and 13%, respectively. Scenario analysis has shown that autonomous growth, without pollution reduction measures, would result in an estimated five-fold increase in nutrient inputs to the lagoon over the period 1980–2050. Nutrient concentrations in the lagoon would consequently increase by a factor of 3 1/2, which could escalate to a dramatic level of eutrophication for the complete system. Pollution reduction policies aimed at non-point sources would be most effective in reducing nutrient concentrations. Point-source pollution reduction would improve conditions around Abidjan, but not substantially in the other sections of the lagoon. The approach taken in this study has proven efficient under conditions of relative data scarceness, and sufficiently reliable to allow for policy level conclusions to be drawn.

[1]  Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences , 1996 .

[2]  R. Arfi,et al.  Organic and bacterial pollution in the Ebrié lagoon, côte d'Ivoire , 1998 .

[3]  J. Durand Environnement et ressources aquatiques de Côte d'Ivoire , 1993 .

[4]  M. Marchand,et al.  Détermination de la pollution chimique (hydrocarbures,organochlorés, métaux) dans la lagune d'Abidjan (Côte d'Ivoire) par l'étude des sédiments , 1985 .

[5]  L. Lemasson,et al.  Contrôle nutritif de la biomasse du seston dans une lagune tropicale de côte d'ivoire. ii. variations géographiques et saisonnières , 1981 .

[6]  J. Trefry,et al.  Sediment trace metal contamination in the Ivory Coast, West Africa , 1987 .

[7]  W. Boynton,et al.  The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean , 1996 .

[8]  N. Caraco,et al.  HUMAN IMPACT ON NITRATE EXPORT : AN ANALYSIS USING MAJOR WORLD RIVERS , 1999 .

[9]  Ángel Morillo,et al.  An Estimation of the Nitrogen and Phosphorus Loading by Wet Deposition over Lake Maracaibo, Venezuela , 2001 .

[10]  A. Bouwman,et al.  Computing land use emissions of greenhouse gases , 1994 .

[11]  A. M. Kouassi,et al.  Land-based sources of pollution and environmental quality of the Ebrié Lagoon waters , 1995 .

[12]  V. Edoh,et al.  [Sporadic case or the onset of a new cholera epidemic]. , 1983, Bulletin de la Societe de pathologie exotique et de ses filiales.

[13]  M. Pace,et al.  Human influence on river nitrogen , 1991, Nature.

[14]  I. Thornton Nutrient Content of Rainwater in the Gambia , 1965, Nature.

[15]  R. Vollenweider,et al.  Advances in defining critical loading levels for phosphorus in lake eutrophication. , 1976 .

[16]  S. Seitzinger,et al.  Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: a global model , 1998, Nutrient Cycling in Agroecosystems.

[17]  M. Meybeck Carbon, nitrogen, and phosphorus transport by world rivers , 1982 .

[18]  A.M.C. Lemmens,et al.  Estimation of water pollution sources in Lake Victoria, East Africa: Application and elaboration of the rapid assessment methodology , 2000 .

[19]  D. Guiral,et al.  Hydroclimat et hydrochimie , 1994 .

[20]  S. Seitzinger Denitrification In Aquatic Sediments , 1990 .

[21]  Hosung Ahn,et al.  Outlier detection in phosphorus dry deposition rates measured in South Florida , 1999 .

[22]  Dennis P. Swaney,et al.  Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences , 1996 .

[23]  E. Eriksson Composition of Atmospheric Precipitation: I. Nitrogen compounds , 1952 .

[24]  W. Lewis Precipitation chemistry and nutrient loading by precipitation in a tropical watershed , 1981 .

[25]  K. Njau,et al.  Assessment of water pollution in the catchment area of Lake Victoria, Tanzania , 2005 .

[26]  F. Janssen,et al.  Environmental pollution in the Gulf of Guinea--a regional approach. , 2002, Marine pollution bulletin.

[27]  E. Eriksson Composition of Atmospheric Precipitation , 1952 .

[28]  H. Greening,et al.  Direct wet and dry deposition of ammonia, nitric acid, ammonium and nitrate to the Tampa Bay Estuary, FL, USA , 2001 .

[29]  P. Dufour Les frontìeres naturelles et humaines du système lagunaire Ebrié Incidences sur l'hydroclimat , 1982, Hydrobiologia.

[30]  M. Dosso,et al.  Variations saisonnières de la contamination microbienne de la zone urbaine d'une lagune tropicale estuarienne , 1990 .

[31]  B. Métongo Concentrations en métaux toxiques chez Crassostrea gasar (huître de mangrove) en zone urbaine lagunaire d'Abidjan (Côte d'Ivoire) , 1991 .

[32]  G. Likens,et al.  The composition of precipitation in remote areas of the world , 1982 .

[33]  S. Seitzinger,et al.  Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems , 1998 .

[34]  W. McDowell,et al.  Seasonal variation of tropical precipitation chemistry: La Selva, Costa Rica , 1997 .