Virtual element method for second-order elliptic eigenvalue problems

We introduce the Virtual Element Method (VEM) for elliptic eigenvalue problems. The main result of the paper states that VEM provides an optimal order approximation of the eigenmodes. A wide set of numerical tests confirm the theoretical analysis.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[3]  Gianmarco Manzini,et al.  The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[4]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[5]  David Mora,et al.  A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem , 2016, Comput. Math. Appl..

[6]  Jacques Rappaz,et al.  Spectral Approximation .1. Problem of Convergence , 1978 .

[7]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[8]  Jacques Rappaz,et al.  Spectral Approximation .2. Error Estimates for Galerkin Method , 1978 .

[9]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[10]  Lourenço Beirão da Veiga,et al.  H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.

[11]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[12]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[13]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[14]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[15]  L. Beirao da Veiga,et al.  Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.

[16]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[17]  J. Rappaz,et al.  On spectral approximation. Part 1. The problem of convergence , 1978 .

[18]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[19]  Alessandro Russo,et al.  $$H({\text {div}})$$H(div) and $$H(\mathbf{curl})$$H(curl)-conforming virtual element methods , 2016 .

[20]  JEAN DESCLOUX,et al.  On spectral approximation. Part 2. Error estimates for the Galerkin method , 1978 .

[21]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[22]  Tosio Kato Perturbation theory for linear operators , 1966 .

[23]  David Mora,et al.  A virtual element method for the vibration problem of Kirchhoff plates , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[24]  Lourenço Beirão da Veiga,et al.  Virtual element methods for parabolic problems on polygonal meshes , 2015 .

[25]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[26]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[27]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[28]  Franco Dassi,et al.  High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..

[29]  L. Beirao da Veiga,et al.  A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.

[30]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[31]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[32]  Stefano Berrone,et al.  A hybrid mortar virtual element method for discrete fracture network simulations , 2016, J. Comput. Phys..

[33]  L. Beirao da Veiga,et al.  Serendipity Nodal VEM spaces , 2015, 1510.08477.

[34]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[35]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[36]  Giuseppe Vacca,et al.  Virtual Element Methods for hyperbolic problems on polygonal meshes , 2016, Comput. Math. Appl..

[37]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[38]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[39]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[40]  Daniele Boffi,et al.  On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..

[41]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[42]  L. Beirao da Veiga,et al.  Serendipity Face and Edge VEM Spaces , 2016, 1606.01048.