Virtual element method for second-order elliptic eigenvalue problems
暂无分享,去创建一个
[1] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[2] Ahmed Alsaedi,et al. Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..
[3] Gianmarco Manzini,et al. The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..
[4] Gianmarco Manzini,et al. Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.
[5] David Mora,et al. A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem , 2016, Comput. Math. Appl..
[6] Jacques Rappaz,et al. Spectral Approximation .1. Problem of Convergence , 1978 .
[7] G. Paulino,et al. PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .
[8] Jacques Rappaz,et al. Spectral Approximation .2. Error Estimates for Galerkin Method , 1978 .
[9] Alessandro Russo,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.
[10] Lourenço Beirão da Veiga,et al. H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.
[11] S. Agmon. Lectures on Elliptic Boundary Value Problems , 1965 .
[12] Lourenço Beirão da Veiga,et al. A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..
[13] L. B. D. Veiga,et al. A virtual element method with arbitrary regularity , 2014 .
[14] Simone Scacchi,et al. A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..
[15] L. Beirao da Veiga,et al. Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.
[16] Gianmarco Manzini,et al. Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .
[17] J. Rappaz,et al. On spectral approximation. Part 1. The problem of convergence , 1978 .
[18] L. Beirao da Veiga,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .
[19] Alessandro Russo,et al. $$H({\text {div}})$$H(div) and $$H(\mathbf{curl})$$H(curl)-conforming virtual element methods , 2016 .
[20] JEAN DESCLOUX,et al. On spectral approximation. Part 2. Error estimates for the Galerkin method , 1978 .
[21] Franco Brezzi,et al. The Hitchhiker's Guide to the Virtual Element Method , 2014 .
[22] Tosio Kato. Perturbation theory for linear operators , 1966 .
[23] David Mora,et al. A virtual element method for the vibration problem of Kirchhoff plates , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.
[24] Lourenço Beirão da Veiga,et al. Virtual element methods for parabolic problems on polygonal meshes , 2015 .
[25] K. Lipnikov,et al. The nonconforming virtual element method , 2014, 1405.3741.
[26] Glaucio H. Paulino,et al. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .
[27] Ilaria Perugia,et al. A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.
[28] Franco Dassi,et al. High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..
[29] L. Beirao da Veiga,et al. A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.
[30] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[31] Stefano Berrone,et al. The virtual element method for discrete fracture network simulations , 2014 .
[32] Stefano Berrone,et al. A hybrid mortar virtual element method for discrete fracture network simulations , 2016, J. Comput. Phys..
[33] L. Beirao da Veiga,et al. Serendipity Nodal VEM spaces , 2015, 1510.08477.
[34] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[35] Franco Brezzi,et al. Virtual Element Methods for plate bending problems , 2013 .
[36] Giuseppe Vacca,et al. Virtual Element Methods for hyperbolic problems on polygonal meshes , 2016, Comput. Math. Appl..
[37] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[38] Richard S. Falk,et al. Basic principles of mixed Virtual Element Methods , 2014 .
[39] Emmanuil H. Georgoulis,et al. A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.
[40] Daniele Boffi,et al. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..
[41] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[42] L. Beirao da Veiga,et al. Serendipity Face and Edge VEM Spaces , 2016, 1606.01048.