Selective Inhibition Mediates the Sequential Recruitment of Motor Pools

[1]  G. Romanes,et al.  THE MOTOR POOLS OF THE SPINAL CORD. , 1964, Progress in brain research.

[2]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[3]  S Grillner,et al.  GABAB receptor activation causes a depression of low- and high-voltage-activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons. , 1993, Journal of neurophysiology.

[4]  P. Stein,et al.  Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: broad tuning to regions of the body surface , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[6]  M. Burrows The Neurobiology of an Insect Brain , 1996 .

[7]  M. Bate,et al.  The Origin, Location, and Projections of the Embryonic Abdominal Motorneurons of Drosophila , 1997, The Journal of Neuroscience.

[8]  S. G. Robinson,et al.  Postsynaptic expression of tetanus toxin light chain blocks synaptogenesis in Drosophila , 1999, Current Biology.

[9]  K. Saigo,et al.  Bar homeobox genes are latitudinal prepattern genes in the developing Drosophila notum whose expression is regulated by the concerted functions of decapentaplegic and wingless. , 1999, Development.

[10]  Timothy W. Cacciatore,et al.  Identification of Neural Circuits by Imaging Coherent Electrical Activity with FRET-Based Dyes , 1999, Neuron.

[11]  Michael Bate,et al.  Altered Electrical Properties in DrosophilaNeurons Developing without Synaptic Transmission , 2001, The Journal of Neuroscience.

[12]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[13]  Kendal Broadie,et al.  Electrophysiological analysis of synaptic transmission in central neurons of Drosophila larvae. , 2002, Journal of neurophysiology.

[14]  Garrison W Cottrell,et al.  Imaging Reveals Synaptic Targets of a Swim-Terminating Neuron in the Leech CNS , 2003, The Journal of Neuroscience.

[15]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[16]  M. Bate,et al.  Embryonic Origins of a Motor System:Motor Dendrites Form a Myotopic Mapin Drosophila , 2003, PLoS biology.

[17]  N. Patel,et al.  Even-skipped, acting as a repressor, regulates axonal projections in Drosophila , 2003, Development.

[18]  N. Okado,et al.  Distribution patterns of dendrites in motor neuron pools of lumbosacral spinal cord of the chicken , 2004, Anatomy and Embryology.

[19]  C. Pratt,et al.  Functionally complex muscles of the cat hindlimb , 2004, Experimental Brain Research.

[20]  L. Griffith,et al.  Electrophysiological and morphological characterization of identified motor neurons in the Drosophila third instar larva central nervous system. , 2004, Journal of neurophysiology.

[21]  G. E. Loeb,et al.  Functionally complex muscles of the cat hindlimb , 2004, Experimental Brain Research.

[22]  Bruce R. Johnson,et al.  Dopamine modulation of phasing of activity in a rhythmic motor network: contribution of synaptic and intrinsic modulatory actions. , 2005, Journal of neurophysiology.

[23]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[24]  V. Budnik,et al.  The fly neuromuscular junction : structure and function , 2006 .

[25]  S. Thor,et al.  Expression of Drosophila BarH1‐H2 homeoproteins in developing dopaminergic cells and segmental nerve a (SNa) motoneurons , 2006, The European journal of neuroscience.

[26]  Melina E. Hale,et al.  A topographic map of recruitment in spinal cord , 2007, Nature.

[27]  W. B. Lindquist,et al.  Continuous shifts in the active set of spinal interneurons during changes in locomotor speed , 2008, Nature Neuroscience.

[28]  Jan Felix Evers,et al.  The development of motor coordination in Drosophila embryos , 2008, Development.

[29]  M. Goulding Circuits controlling vertebrate locomotion: moving in a new direction , 2009, Nature Reviews Neuroscience.

[30]  S. Grillner,et al.  Measured motion: searching for simplicity in spinal locomotor networks , 2009, Current Opinion in Neurobiology.

[31]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[32]  R. Levine,et al.  Role of intrinsic properties in Drosophila motoneuron recruitment during fictive crawling. , 2010, Journal of neurophysiology.

[33]  Stefan R. Pulver,et al.  Spike integration and cellular memory in a rhythmic network from Na+/K+ pump current dynamics , 2009, Nature Neuroscience.

[34]  Marco Tripodi,et al.  Monosynaptic Rabies Virus Reveals Premotor Network Organization and Synaptic Specificity of Cholinergic Partition Cells , 2010, Neuron.

[35]  A. Büschges,et al.  New Moves in Motor Control , 2011, Current Biology.

[36]  Marco Tripodi,et al.  Motor antagonism exposed by spatial segregation and timing of neurogenesis , 2011, Nature.

[37]  A. Manira,et al.  Principles governing recruitment of motoneurons during swimming in zebrafish , 2011, Nature Neuroscience.

[38]  Toshiaki Endo,et al.  Identification of Minimal Neuronal Networks Involved in Flexor-Extensor Alternation in the Mammalian Spinal Cord , 2011, Neuron.

[39]  O. Kiehn Development and functional organization of spinal locomotor circuits , 2011, Current Opinion in Neurobiology.

[40]  T. Jessell,et al.  Patterns of Spinal Sensory-Motor Connectivity Prescribed by a Dorsoventral Positional Template , 2011, Cell.

[41]  Whole-cell patch recording from Drosophila larval neurons. , 2011, Cold Spring Harbor protocols.

[42]  Kristen M Harris,et al.  Ultrastructure of synapses in the mammalian brain. , 2012, Cold Spring Harbor perspectives in biology.

[43]  Shawn R. Lockery,et al.  Characterization of Drosophila Larval Crawling at the Level of Organism, Segment, and Somatic Body Wall Musculature , 2012, The Journal of Neuroscience.

[44]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[45]  Matthias Landgraf,et al.  Dendritic growth gated by a steroid hormone receptor underlies increases in activity in the developing Drosophila locomotor system , 2013, Proceedings of the National Academy of Sciences.

[46]  A. Miri,et al.  Edging toward Entelechy in Motor Control , 2013, Neuron.

[47]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[48]  Rachel I. Wilson,et al.  Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system , 2013, Proceedings of the National Academy of Sciences.

[49]  O. Kiehn,et al.  Dual-mode operation of neuronal networks involved in left–right alternation , 2013, Nature.

[50]  Nachum Ulanovsky,et al.  Editorial overview: Neural maps , 2014, Current Opinion in Neurobiology.

[51]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[52]  D. McLean,et al.  Selective Responses to Tonic Descending Commands by Temporal Summation in a Spinal Motor Pool , 2014, Neuron.

[53]  Omotara Ogundeyi,et al.  A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. , 2014, Cell reports.

[54]  Alexander Borst,et al.  Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision , 2014, The Journal of Neuroscience.

[55]  David L. McLean,et al.  Modular Organization of Axial Microcircuits in Zebrafish , 2014, Science.

[56]  Jessica Ausborn,et al.  Separate Microcircuit Modules of Distinct V2a Interneurons and Motoneurons Control the Speed of Locomotion , 2014, Neuron.

[57]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[58]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[59]  Tatyana O. Sharpee,et al.  Spinal Locomotor Circuits Develop Using Hierarchical Rules Based on Motorneuron Position and Identity , 2015, Neuron.

[60]  Timothy A. Machado,et al.  Primacy of Flexor Locomotor Pattern Revealed by Ancestral Reversion of Motor Neuron Identity , 2015, Cell.

[61]  Matthias Landgraf,et al.  Even-Skipped+ Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude , 2015, Neuron.

[62]  Stefan R. Pulver,et al.  Imaging fictive locomotor patterns in larval Drosophila , 2015, Journal of neurophysiology.

[63]  Dario Farina,et al.  Motor Neuron Pools of Synergistic Thigh Muscles Share Most of Their Synaptic Input , 2015, The Journal of Neuroscience.

[64]  Jimena Berni,et al.  Genetic Dissection of a Regionally Differentiated Network for Exploratory Behavior in Drosophila Larvae , 2015, Current Biology.

[65]  D. McLean,et al.  Peeling back the layers of locomotor control in the spinal cord , 2015, Current Opinion in Neurobiology.

[66]  Silvia Arber,et al.  Distinct Limb and Trunk Premotor Circuits Establish Laterality in the Spinal Cord , 2015, Neuron.

[67]  Ole Kiehn,et al.  Phenotypic Characterization of Speed-Associated Gait Changes in Mice Reveals Modular Organization of Locomotor Networks , 2015, Current Biology.

[68]  J. Truman,et al.  Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system , 2016, eLife.

[69]  A. Cardona,et al.  A circuit mechanism for the propagation of waves of muscle contraction in Drosophila , 2016, eLife.

[70]  George Z. Mentis,et al.  Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits , 2016, Cell.

[71]  Matthias Landgraf,et al.  Selective inhibition mediates the sequential recruitment of motor pools 1 , 2016 .