Normal form for single-qutrit Clifford+Toperators and synthesis of single-qutrit gates

We study single-qutrit gates composed of Clifford and $T$ gates, using the qutrit version of the $T$ gate proposed by Howard and Vala. We propose a normal form for single-qutrit gates analogous to the Matsumoto-Amano normal form for qubits. We prove that the normal form is optimal with respect to the number of $T$ gates used and that any string of qutrit Clifford+$T$ operators can be put into this normal form in polynomial time. We also prove that this form is unique and provide an algorithm for exact synthesis of any single qutrit Clifford+$T$ operator.

[1]  D. Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, quant-ph/9802007.

[2]  W. Marsden I and J , 2012 .

[3]  Huangjun Zhu SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.

[4]  Sean Clark Valence bond solid formalism for d-level one-way quantum computation , 2005, quant-ph/0512155.

[5]  D. Browne,et al.  Qutrit magic state distillation , 2012, 1202.2326.

[6]  Dianne P. O'Leary,et al.  Efficient circuits for exact-universal computationwith qudits , 2006, Quantum Inf. Comput..

[7]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Hillary Dawkins,et al.  Qutrit Magic State Distillation Tight in Some Directions. , 2015, Physical review letters.

[9]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[10]  Hai-Rui Wei,et al.  Synthesis of multivalued quantum logic circuits by elementary gates , 2013, 1302.0056.

[11]  Neil J. Ross,et al.  ALGEBRAIC AND LOGICAL METHODS IN QUANTUM COMPUTATION , 2015, 1510.02198.

[12]  A. Harrow,et al.  Practical scheme for quantum computation with any two-qubit entangling gate. , 2002, Physical Review Letters.

[13]  Mark Howard,et al.  Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.

[14]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[15]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[16]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[17]  Earl T Campbell,et al.  Enhanced fault-tolerant quantum computing in d-level systems. , 2014, Physical review letters.

[18]  J. C. Retamal,et al.  Qutrit quantum computer with trapped ions , 2003 .

[19]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[20]  Goong Chen,et al.  Mathematics of Quantum Computation , 2002 .

[21]  Jr.,et al.  Multivalued logic gates for quantum computation , 2000, quant-ph/0002033.

[22]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[23]  Krysta Marie Svore,et al.  Asymptotically Optimal Topological Quantum Compiling , 2013, Physical review letters.

[24]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[25]  Hai‐Rui Wei,et al.  Optimal synthesis of multivalued quantum circuits , 2015, 1506.04394.

[26]  D. Gross Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.

[27]  Vishal Sahni,et al.  Modelling microtubules in the brain as n-qudit quantum Hopfield network and beyond , 2015, Int. J. Gen. Syst..

[28]  Daniel Gottesman,et al.  Diagonal gates in the Clifford hierarchy , 2016, 1608.06596.

[29]  P. Batra Designs , 2019, European Fashion Law.

[30]  P. Sarnak,et al.  Super-Golden-Gates for PU(2) , 2017, 1704.02106.

[31]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[32]  Dmitri Maslov,et al.  Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits , 2012, IEEE Transactions on Computers.

[33]  Vishal Sahni,et al.  From n-qubit multi-particle quantum teleportation modelling to n-qudit contextuality based quantum teleportation and beyond , 2017, Int. J. Gen. Syst..

[34]  N. J. A. Sloane,et al.  The Invariants of the Cli ord , 1999 .

[35]  Alex Bocharov,et al.  Resource-optimal single-qubit quantum circuits. , 2012, Physical review letters.

[36]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[37]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[38]  Victor Veitch,et al.  Contextuality supplies the ‘magic’ for quantum computation , 2014, Nature.

[39]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[40]  D. O’Leary,et al.  Asymptotically optimal quantum circuits for d-level systems. , 2004, Physical review letters.

[41]  S. Filipp,et al.  Control and tomography of a three level superconducting artificial atom. , 2010, Physical review letters.

[42]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..