Surface Li 2 CO 3 Mediated Phosphorization Enables Compatible Interfaces of Composite Polymer Electrolyte for Solid‐State Lithium Batteries

[1]  Yan‐Bing He,et al.  Inhibiting Formation and Reduction of Li2CO3 to LiCx at Grain Boundaries in Garnet Electrolytes to Prevent Li Penetration , 2023, Advanced materials.

[2]  Mingxue Tang,et al.  Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries. , 2023, Journal of the American Chemical Society.

[3]  Kaiming Liao,et al.  Grafting of Lithiophilic and Electron‐Blocking Interlayer for Garnet‐Based Solid‐State Li Metal Batteries via One‐Step Anhydrous Poly‐Phosphoric Acid Post‐Treatment , 2022, Advanced Functional Materials.

[4]  S. Agarwal,et al.  Hybrid Polymer Electrolyte Encased Cathode Particles Interface‐Based Core–Shell Structure for High‐Performance Room Temperature All‐Solid‐State Batteries , 2022, Advanced Energy Materials.

[5]  Shichao Wu,et al.  Duality of Li_2CO_3 in Solid-State Batteries , 2022, Transactions of Tianjin University.

[6]  Yuhao Liang,et al.  Molecular‐level Designed Polymer Electrolyte for High‐Voltage Lithium–Metal Solid‐State Batteries , 2022, Advanced Functional Materials.

[7]  C. Nan,et al.  Role of Interfaces in Solid-State Batteries. , 2022, Advanced materials.

[8]  Chao Ching Wang,et al.  Improving Li-ion interfacial transport in hybrid solid electrolytes , 2022, Nature Nanotechnology.

[9]  Aobing Du,et al.  Robust Self‐Standing Single‐Ion Polymer Electrolytes Enabling High‐Safety Magnesium Batteries at Elevated Temperature , 2022, Advanced Energy Materials.

[10]  C. Nan,et al.  Ion–Dipole Interaction Regulation Enables High‐Performance Single‐Ion Polymer Conductors for Solid‐State Batteries , 2022, Advanced materials.

[11]  Liquan Chen,et al.  Polymer Electrolytes Based on Interactions between [Solvent-Li+] Complex and Solvent-Modified Polymer , 2022, SSRN Electronic Journal.

[12]  Quan-hong Yang,et al.  In‐situ Polymerized Gel Polymer Electrolytes with High Room‐Temperature Ionic Conductivity and Regulated Na+ Solvation Structure for Sodium Metal Batteries , 2022, Advanced Functional Materials.

[13]  Shichao Wu,et al.  Solid-state lithium batteries: Safety and prospects , 2022, eScience.

[14]  P. Mukherjee,et al.  Polymorphism of Garnet Solid Electrolytes and Its Implications on Grain Level Chemo-Mechanics , 2021 .

[15]  Chunsheng Wang,et al.  Copper-coordinated cellulose ion conductors for solid-state batteries , 2021, Nature.

[16]  B. Fan,et al.  Solvent-Free Process for Blended PVDF-HFP/PEO and LLZTO Composite Solid Electrolytes with Enhanced Mechanical and Electrochemical Properties for Lithium Metal Batteries , 2021, ACS Applied Energy Materials.

[17]  Yan‐Bing He,et al.  Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. , 2021, Angewandte Chemie.

[18]  Bingbing Chen,et al.  Smart Construction of an Intimate Lithium | Garnet Interface for All‐Solid‐State Batteries by Tuning the Tension of Molten Lithium , 2021, Advanced Functional Materials.

[19]  Xi Ke,et al.  The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li + transportation , 2021, Carbon Energy.

[20]  Mingzhe Xue,et al.  Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries , 2021 .

[21]  Zhangxiang Hao,et al.  Progress and perspective of interface design in garnet electrolyte‐based all‐solid‐state batteries , 2021, Carbon Energy.

[22]  Zachary D. Hood,et al.  Processing thin but robust electrolytes for solid-state batteries , 2021, Nature Energy.

[23]  W. Lu,et al.  High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery , 2020, Journal of Energy Chemistry.

[24]  P. He,et al.  Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries , 2020 .

[25]  Qiang Zhang,et al.  Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate-Temperature Conversion Chemistry. , 2020, Angewandte Chemie.

[26]  X. Sun,et al.  Li2CO3: A Critical Issue for Developing Solid Garnet Batteries , 2020 .

[27]  Z. Wen,et al.  In Situ Generated Fireproof Gel Polymer Electrolyte with Li6.4Ga0.2La3Zr2O12 As Initiator and Ion‐Conductive Filler , 2019, Advanced Energy Materials.

[28]  Xiaofei Yang,et al.  Rational Design of Hierarchical “Ceramic‐in‐Polymer” and “Polymer‐in‐Ceramic” Electrolytes for Dendrite‐Free Solid‐State Batteries , 2019, Advanced Energy Materials.

[29]  Yang Shen,et al.  Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes , 2019, Advanced materials.

[30]  David G. Mackanic,et al.  Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries , 2018, Materials Today Nano.

[31]  J. Kilner,et al.  Garnet Electrolytes for Solid State Batteries: Visualization of Moisture-Induced Chemical Degradation and Revealing Its Impact on the Li-Ion Dynamics , 2018 .

[32]  Yang Shen,et al.  Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. , 2017, Journal of the American Chemical Society.

[33]  Candace K. Chan,et al.  Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. , 2017, ACS applied materials & interfaces.

[34]  Henghui Xu,et al.  Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. , 2017, Angewandte Chemie.

[35]  Lei Cheng,et al.  Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes. , 2015, ACS applied materials & interfaces.

[36]  D. Y. Kim,et al.  Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity , 2007 .

[37]  X. Qiu,et al.  ESR and vibrational spectroscopy study on poly(vinylidene fluoride) membranes with alkaline treatment , 2006 .