Mitochondria‐targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats

In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We have shown that cirrhotic livers have increased reactive oxygen species (ROS), and that antioxidant therapy decreases portal pressure. Considering that mitochondria produce many of these ROS, our aim was to assess the effects of the oral mitochondria‐targeted antioxidant mitoquinone on hepatic oxidative stress, HSC phenotype, liver fibrosis and portal hypertension.

[1]  J. Bosch,et al.  Enoxaparin reduces hepatic vascular resistance and portal pressure in cirrhotic rats. , 2016, Journal of hepatology.

[2]  G. Gerken,et al.  All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells , 2015, PloS one.

[3]  R. Donahue,et al.  Endogenous Opioid-Masked Latent Pain Sensitization: Studies from Mouse to Human , 2015, PloS one.

[4]  J. Bosch,et al.  Liver sinusoidal endothelial dysfunction after LPS administration: a role for inducible-nitric oxide synthase. , 2014, Journal of hepatology.

[5]  P. Olinga,et al.  Precision-cut liver slices: a tool to model the liver ex vivo. , 2013, Journal of hepatology.

[6]  J. Bosch,et al.  Resveratrol improves intrahepatic endothelial dysfunction and reduces hepatic fibrosis and portal pressure in cirrhotic rats. , 2013, Journal of hepatology.

[7]  J. Bosch,et al.  Recombinant human manganese superoxide dismutase reduces liver fibrosis and portal pressure in CCl4-cirrhotic rats. , 2013, Journal of hepatology.

[8]  K. Erdélyi,et al.  Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia–reperfusion: Therapeutic potential of mitochondrially targeted antioxidants , 2012, Free radical biology & medicine.

[9]  J. García‐Pagán,et al.  Functional aspects on the pathophysiology of portal hypertension in cirrhosis. , 2012, Journal of hepatology.

[10]  B. Lavina,et al.  PPARα activation improves endothelial dysfunction and reduces fibrosis and portal pressure in cirrhotic rats. , 2012, Journal of hepatology.

[11]  J. Ladero Noninvasive Evaluation of Liver Fibrosis in Patients with Chronic Hepatitis C , 2011, Hepatitis monthly.

[12]  N. Jhala,et al.  Mitochondria‐targeted ubiquinone (MitoQ) decreases ethanol‐dependent micro and macro hepatosteatosis , 2011, Hepatology.

[13]  B. Lavina,et al.  Tempol administration, a superoxide dismutase mimetic, reduces hepatic vascular resistance and portal pressure in cirrhotic rats. , 2011, Journal of hepatology.

[14]  G. Garcı́a-Cardeña,et al.  Endothelial expression of transcription factor Kruppel-like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver , 2010, Gut.

[15]  Mercedes Fernandez,et al.  Hepatic endothelial dysfunction and abnormal angiogenesis: new targets in the treatment of portal hypertension. , 2010, Journal of hepatology.

[16]  Robin A. J. Smith,et al.  The mitochondria‐targeted anti‐oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients , 2010, Liver international : official journal of the International Association for the Study of the Liver.

[17]  P. Muriel Role of free radicals in liver diseases , 2009, Hepatology international.

[18]  E. Novo,et al.  Redox mechanisms in hepatic chronic wound healing and fibrogenesis , 2008, Fibrogenesis & tissue repair.

[19]  Mercedes Fernandez,et al.  Increased oxidative stress in cirrhotic rat livers: A potential mechanism contributing to reduced nitric oxide bioavailability , 2007, Hepatology.

[20]  R. Brandes,et al.  Evidence against a role for NADPH oxidase modulating hepatic vascular tone in cirrhosis. , 2007, Gastroenterology.

[21]  J. Bosch,et al.  Potential role of antioxidants in the treatment of portal hypertension. , 2007, Journal of hepatology.

[22]  Simon J. Walker,et al.  NADPH oxidases in cardiovascular health and disease. , 2006, Antioxidants & redox signaling.

[23]  A. Ramachandran,et al.  Oxidative stress in the development of liver cirrhosis: A comparison of two different experimental models , 2006, Journal of gastroenterology and hepatology.

[24]  S. Friedman,et al.  Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis , 2004, Gut.

[25]  C. Vascotto,et al.  The importance of redox state in liver damage. , 2004, Annals of hepatology.

[26]  R. Schwabe,et al.  NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. , 2003, The Journal of clinical investigation.

[27]  J. Rodés,et al.  Cyclooxygenase-1 inhibition corrects endothelial dysfunction in cirrhotic rat livers. , 2003, Journal of hepatology.

[28]  D. Harrison,et al.  The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. , 2003, Trends in pharmacological sciences.

[29]  M. Gaca,et al.  Regulation of hepatic stellate cell proliferation and collagen synthesis by proteinase-activated receptors. , 2002, Journal of hepatology.

[30]  J. Rodés,et al.  5-lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possible role of cysteinyl-leukotrienes. , 2002, Gastroenterology.

[31]  H. Tilg,et al.  Cytokines and liver diseases. , 2001, Canadian journal of gastroenterology = Journal canadien de gastroenterologie.

[32]  D. Brenner,et al.  Hepatic Stellate Cells as a Target for the Treatment of Liver Fibrosis , 2001, Seminars in liver disease.

[33]  T. Niki,et al.  Formation of normal desmin intermediate filaments in mouse hepatic stellate cells requires vimentin , 2001, Hepatology.

[34]  Robin A. J. Smith,et al.  Drug delivery to mitochondria: the key to mitochondrial medicine. , 2000, Advanced drug delivery reviews.

[35]  B. Halliwell Antioxidant defence mechanisms: from the beginning to the end (of the beginning). , 1999, Free radical research.

[36]  Sumio Watanabe,et al.  Immunocytochemical Detection of Desmin in Fat‐Storing Cells (Ito Cells) , 1984, Hepatology.

[37]  S. Friedman Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. , 2008, Physiological reviews.

[38]  M. Pinzani,et al.  Biology of Hepatic Stellate Cells and Their Possible Relevance in the Pathogenesis of Portal Hypertension in Cirrhosis , 1999, Seminars in liver disease.