Supplementation of Moringa based zinc oxide nanoparticles mitigates salt stress in Celosia argentea through reduced chloride (Cl −) uptake and modulation in physiochemical attributes

[1]  A. Hossain,et al.  Foliar application of silicon-based nanoparticles improve the adaptability of maize (Zea mays L.) in cadmium contaminated soils , 2023, Environmental Science and Pollution Research.

[2]  R. Varshney,et al.  Smart reprograming of plants against salinity stress using modern biotechnological tools , 2022, Critical reviews in biotechnology.

[3]  A. Shah,et al.  Synergistic Effect of Zinc Oxide Nanoparticles and Moringa oleifera Leaf Extract Alleviates Cadmium Toxicity in Linum usitatissimum: Antioxidants and Physiochemical Studies , 2022, Frontiers in Plant Science.

[4]  M. Aasim,et al.  TiO2 nanoparticle synthesis, characterization and application to shoot regeneration of water hyssop (Bacopa monnieri L. Pennel) in vitro , 2022, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[5]  M. Aasim,et al.  Deciphering the iPBS retrotransposons based genetic diversity of nanoparticles induced in Vitro seedlings of industrial hemp (Cannabis sativa L.) , 2022, Molecular Biology Reports.

[6]  Z. Ahmad,et al.  Enhancing Salt Tolerance in Cotton by Improving its Morpho-physiological and Antioxidant Potential Through Foliar Applied Silicon , 2022, Silicon.

[7]  A. Shah,et al.  Synergistic application of silver nanoparticles and indole acetic acid alleviate cadmium induced stress and improve growth of Daucus carota L , 2022, Chemosphere.

[8]  M. Greger,et al.  Chloride removal capacity and salinity tolerance in wetland plants. , 2022, Journal of environmental management.

[9]  Montaser M. Hassan,et al.  Foliar applied salicylic acid ameliorates water and salt stress by improving gas exchange and photosynthetic pigments in wheat , 2021 .

[10]  F. Hnilička,et al.  Salinity Stress Affects Photosynthesis, Malondialdehyde Formation, and Proline Content in Portulaca oleracea L. , 2021, Plants.

[11]  Changwei Hu,et al.  Effect of MgCl2 solution pretreatment on pubescens conversion at room temperature , 2021 .

[12]  K. Siddique,et al.  Na+ and/or Cl− Toxicities Determine Salt Sensitivity in Soybean (Glycine max (L.) Merr.), Mungbean (Vigna radiata (L.) R. Wilczek), Cowpea (Vigna unguiculata (L.) Walp.), and Common Bean (Phaseolus vulgaris L.) , 2021, International journal of molecular sciences.

[13]  F. Zulfiqar,et al.  Nanoparticles potentially mediate salt stress tolerance in plants. , 2021, Plant physiology and biochemistry : PPB.

[14]  A. Kurunç,et al.  Effects of salt source and irrigation water salinity on growth, yield and quality parameters of Stevia rebaudiana Bertoni , 2020 .

[15]  N. Alabdallah,et al.  The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions , 2020, Saudi journal of biological sciences.

[16]  K. Ghassemi-Golezani,et al.  Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress , 2020, Environmental Science and Pollution Research.

[17]  P. Suprasanna,et al.  Engineering salinity tolerance in plants: progress and prospects , 2020, Planta.

[18]  Z. Abideen,et al.  Short and long term salinity induced differences in growth and tissue specific ion regulation of Phragmites karka , 2020 .

[19]  F. Sami,et al.  Impact of Silver Nanoparticles on Plant Physiology: A Critical Review , 2020 .

[20]  L. Kong,et al.  Nano-ZnO priming induces salt tolerance by promoting photosynthetic carbon assimilation in wheat , 2020, Archives of Agronomy and Soil Science.

[21]  Emad A. Abdeldaym,et al.  Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity , 2019, Agronomy.

[22]  Zhaohu Li,et al.  The Importance of Cl− Exclusion and Vacuolar Cl− Sequestration: Revisiting the Role of Cl− Transport in Plant Salt Tolerance , 2019, Front. Plant Sci..

[23]  G. Cadenas-Pliego,et al.  Se Nanoparticles Induce Changes in the Growth, Antioxidant Responses, and Fruit Quality of Tomato Developed under NaCl Stress , 2019, Molecules.

[24]  S. Farouk,et al.  Exogenous Zinc Forms Counteract NaCl-Induced Damage by Regulating the Antioxidant System, Osmotic Adjustment Substances, and Ions in Canola (Brassica napus L. cv. Pactol) Plants , 2019, Journal of Soil Science and Plant Nutrition.

[25]  Sukhmeen Kaur Kohli,et al.  Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress , 2019, Biomolecules.

[26]  Merle Tränkner,et al.  Critical Leaf Magnesium Thresholds and the Impact of Magnesium on Plant Growth and Photo-Oxidative Defense: A Systematic Review and Meta-Analysis From 70 Years of Research , 2019, Front. Plant Sci..

[27]  M. Ghasemnezhad,et al.  Application of Nano-Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants , 2019, Agronomy.

[28]  L. Pourakbar,et al.  Interactive Effects of Salinity and ZnO Nanoparticles on Physiological and Molecular Parameters of Rapeseed (Brassica napus L.) , 2019, Communications in Soil Science and Plant Analysis.

[29]  Khalid Saeed,et al.  Nanoparticles: Properties, applications and toxicities , 2017, Arabian Journal of Chemistry.

[30]  S. Shahi,et al.  Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects , 2018, Journal of Nanostructure in Chemistry.

[31]  D. Maheshwari,et al.  Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. , 2018, Ecotoxicology and environmental safety.

[32]  L. Tran,et al.  Titanium Dioxide Nanoparticles Improve Growth and Enhance Tolerance of Broad Bean Plants under Saline Soil Conditions , 2018 .

[33]  Byoung Ryong Jeong,et al.  Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. , 2018, Ecotoxicology and environmental safety.

[34]  Azra Yasmin,et al.  Microbial synthesis of nanoparticles and their potential applications in biomedicine , 2017 .

[35]  V. Adam,et al.  Nanoparticles based on essential metals and their phytotoxicity , 2017, Journal of Nanobiotechnology.

[36]  I. Hussain,et al.  Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants , 2017, Journal of Materials Science.

[37]  D. Suarez,et al.  Evaluation of Alfalfa (Medicago sativa L.) Populations’ Response to Salinity Stress , 2017 .

[38]  Lalita Ledwani,et al.  Green synthesis of nanoparticles: Their advantages and disadvantages , 2016 .

[39]  Ó. Vicente,et al.  Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production , 2015, Front. Plant Sci..

[40]  P. Han,et al.  Effects of magnesium chloride polluted soils on underground Q235 steel pipelines , 2015 .

[41]  Nishikant C. Shinde,et al.  Nanoparticles: Advances in Drug Delivery Systems , 2012 .

[42]  Yasuhiko Yoshida,et al.  Nanoparticulate material delivery to plants , 2010 .

[43]  D. Real,et al.  Lotus tenuis tolerates the interactive effects of salinity and waterlogging by 'excluding' Na+ and Cl- from the xylem. , 2007, Journal of experimental botany.

[44]  Chao Liu,et al.  Influences of Nano-TiO2 on the chloroplast aging of spinach under light , 2005, Biological Trace Element Research.

[45]  Fan Yang,et al.  Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach , 2007, Biological Trace Element Research.

[46]  M. Asins,et al.  Increasing salt tolerance in the tomato. , 2006, Journal of experimental botany.

[47]  S. Sykes The inheritance of salt exclusion in woody perennial fruit species , 1992, Plant and Soil.

[48]  I. D. Teare,et al.  Rapid determination of free proline for water-stress studies , 1973, Plant and Soil.

[49]  Paul Takhistov,et al.  Nanotechnology: A New Frontier in Food Science , 2003 .

[50]  Jie Fu,et al.  Completely "green" synthesis and stabilization of metal nanoparticles. , 2003, Journal of the American Chemical Society.

[51]  A. Martynenko,et al.  Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening , 1998 .

[52]  M. Nicolas,et al.  Selecting for salt tolerance in white clover (Trifolium repens): chloride ion exclusion and its heritability , 1997 .

[53]  G. L. Miller Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .

[54]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.