Scale Selection of Adaptive Kernel Regression by Joint Saliency Map for Nonrigid Image Registration

Joint saliency map (JSM) [1] was developed to assign high joint saliency values to the corresponding saliency structures (called Joint Saliency Structures, JSSs) but zero or low joint saliency values to the outliers (or mismatches) that are introduced by missing correspondence or local large deformations between the reference and moving images to be registered. JSM guides the local structure matching in nonrigid registration by emphasizing these JSSs' sparse deformation vectors in adaptive kernel regression of hierarchical sparse deformation vectors for iterative dense deformation reconstruction. By designing an effective superpixel-based local structure scale estimator to compute the reference structure's structure scale, we further propose to determine the scale (the width) of kernels in the adaptive kernel regression through combining the structure scales to JSM-based scales of mismatch between the local saliency structures. Therefore, we can adaptively select the sample size of sparse deformation vectors to reconstruct the dense deformation vectors for accurately matching the every local structures in the two images. The experimental results demonstrate better accuracy of our method in aligning two images with missing correspondence and local large deformation than the state-of-the-art methods.

[1]  Peyman Milanfar,et al.  A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical , 2013, IEEE Signal Processing Magazine.

[2]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[3]  Adrian G. Bors,et al.  Kernel Bandwidth Estimation for Nonparametric Modeling , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  C. Lloyd Local Models for Spatial Analysis , 2006 .

[5]  Chris Rorden,et al.  Spatial Normalization of Brain Images with Focal Lesions Using Cost Function Masking , 2001, NeuroImage.

[6]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Christopher D. Lloyd,et al.  Local Models for Spatial Analysis, Second Edition , 2010 .

[8]  Kunal Narayan Chaudhury,et al.  Improvements on “Fast Space-Variant Elliptical Filtering Using Box Splines” , 2012, IEEE Transactions on Image Processing.

[9]  Luis Enrique Sucar,et al.  Probabilistic estimation of local scale , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[10]  Paul A. Yushkevich,et al.  Deformable registration of diffusion tensor MR images with explicit orientation optimization , 2006, Medical Image Anal..

[11]  Juan Ruiz-Alzola,et al.  Nonrigid Registration Using Regularized Matching Weighted by Local Structure , 2002, MICCAI.

[12]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[13]  Zongben Xu,et al.  Scale selection for anisotropic diffusion filter by Markov random field model , 2010, Pattern Recognit..

[14]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[15]  Eigil Samset,et al.  Summarizing and Visualizing Uncertainty in Non-rigid Registration , 2010, MICCAI.

[16]  W. Marsden I and J , 2012 .

[17]  Jaakko Astola,et al.  From Local Kernel to Nonlocal Multiple-Model Image Denoising , 2009, International Journal of Computer Vision.

[18]  Edoardo Ardizzone,et al.  Multi-modal image registration using fuzzy kernel regression , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[19]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Binjie Qin,et al.  Registration of Images With Outliers Using Joint Saliency Map , 2010, IEEE Signal Processing Letters.

[21]  Jan Kybic,et al.  Bootstrap Resampling for Image Registration Uncertainty Estimation Without Ground Truth , 2010, IEEE Transactions on Image Processing.

[22]  Jing Zhang,et al.  Projection Kernel Regression for Image Registration and Fusion in Video-Based Criminal Investigation , 2011, 2011 International Conference on Multimedia and Signal Processing.

[23]  Clayton D. Scott,et al.  Spatial Confidence Regions for Quantifying and Visualizing Registration Uncertainty , 2012, WBIR.

[24]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[28]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[31]  Nikos Paragios,et al.  Registration with Uncertainties and Statistical Modeling of Shapes with Variable Metric Kernels , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Radhe Mohan,et al.  A deformable image registration method to handle distended rectums in prostate cancer radiotherapy. , 2006, Medical physics.

[33]  Aristidis Likas,et al.  Registering sets of points using Bayesian regression , 2012, Neurocomputing.

[34]  Marc L. Kessler,et al.  A Stochastic Approach to Estimate the UncertaintyInvolved in B-Spline Image Registration , 2009, IEEE Transactions on Medical Imaging.

[35]  C. Westin,et al.  Normalized and differential convolution , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.