Outsmarting the Atmospheric Turbulence for Ground-Based Telescopes Using the Stochastic Levenberg-Marquardt Method

[1]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[2]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[3]  Jorge Nocedal,et al.  On the Use of Stochastic Hessian Information in Optimization Methods for Machine Learning , 2011, SIAM J. Optim..

[4]  James Osborn,et al.  Modelling synthetic atmospheric turbulence profiles with temporal variation using Gaussian mixture model , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  Shan Sung Liew,et al.  An optimized second order stochastic learning algorithm for neural network training , 2015, Neurocomputing.

[6]  G. Rousset,et al.  Tomography approach for multi-object adaptive optics. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Michael W. Mahoney,et al.  Sub-sampled Newton methods , 2018, Math. Program..

[8]  J. Nocedal,et al.  Exact and Inexact Subsampled Newton Methods for Optimization , 2016, 1609.08502.

[9]  Klaus-Robert Müller,et al.  Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.

[10]  Serge Gratton,et al.  Levenberg-Marquardt Methods Based on Probabilistic Gradient Models and Inexact Subproblem Solution, with Application to Data Assimilation , 2016, SIAM/ASA J. Uncertain. Quantification.

[11]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[12]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[13]  Stefania Bellavia,et al.  A Levenberg–Marquardt method for large nonlinear least-squares problems with dynamic accuracy in functions and gradients , 2018, Numerische Mathematik.