The role of the intrinsic electrophysiological properties of central neurones in oscillation and resonance

Publisher Summary This chapter discusses the role of the intrinsic electrophysiological properties of central neurons in oscillation and resonance. In vitro experiments using brainstem slices have demonstrated that inferior olive neurons have a set of ionic conductances that are activated in such a way as to give these cells intrinsic oscillatory properties. The firing of inferior olive cells is characterized by an initial fast-rising action potential, which is prolonged to 10–15 ms by an after-depolarization. The abrupt, long-lasting after-hyperpolarization the plateau after-depolarization totally silences the spike generating activity. This hyperpolarization is typically terminated by a sharp, active rebound response, which arises when the membrane potential is negative to the resting level. When this rebound reaches threshold for an action potential, the cell is again activated. In this way, the cell will fire at a frequency determined largely by the characteristics of the after-hyperpolarization.

[1]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[2]  Y. Lamarre,et al.  Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. , 1973, Brain research.

[3]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[4]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[5]  Y. Lamarre,et al.  Harmaline-induced rhythmic activity of cerebellar and lower brain stem neurons. , 1971, Brain research.

[6]  C. Stevens,et al.  Inward and delayed outward membrane currents in isolated neural somata under voltage clamp , 1971, The Journal of physiology.

[7]  P. Andersen,et al.  The role of inhibition in the phasing of spontaneous thalamo‐cortical discharge , 1964, The Journal of physiology.

[8]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[9]  W. Waldeyer,et al.  Ueber einige neuere Forschungen im Gebiete der Anatomie des Centralnervensystems1) , 1891 .

[10]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[11]  R. Llinás Rebound excitation as the physiological basis for tremor: a biophysical study of the oscillatory pro , 1984 .

[12]  R. Llinás,et al.  Electrophysiology of mammalian thalamic neurones in vitro , 1982, Nature.

[13]  A. Goldbeter,et al.  Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations , 1988, European Biophysics Journal.

[14]  M. V. Bennett,et al.  Gap junctions, electrotonic coupling, and intercellular communication. , 1978, Neurosciences Research Program bulletin.

[15]  R. Llinás,et al.  Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. , 1974, Journal of neurophysiology.

[16]  R. Llinás,et al.  An electrophysiological study of the in vitro, perfused brain stem‐cerebellum of adult guinea‐pig. , 1988, The Journal of physiology.

[17]  R. Llinás,et al.  Oscillatory properties of guinea‐pig inferior olivary neurones and their pharmacological modulation: an in vitro study. , 1986, The Journal of physiology.

[18]  R. Meech,et al.  Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. , 1975, The Journal of physiology.

[19]  D G Gwyn,et al.  The inferior olivary nucleus of the rat: A light and electron microscopic study , 1977, The Journal of comparative neurology.

[20]  R. Llinás,et al.  Electrotonic coupling between neurons in cat inferior olive. , 1974, Journal of neurophysiology.

[21]  J S King,et al.  The synaptic cluster )glomerulus( in the inferior olivary nucleus , 1976, The Journal of comparative neurology.

[22]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[23]  R. Llinás,et al.  Electrophysiology of guinea‐pig cerebellar nuclear cells in the in vitro brain stem‐cerebellar preparation. , 1988, The Journal of physiology.

[24]  A. Pellionisz,et al.  Tensor network theory of the metaorganization of functional geometries in the central nervous system , 1985, Neuroscience.

[25]  J. Hindmarsh,et al.  A model of a thalamic neuron , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[26]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[27]  S. R. Cajal,et al.  Estructura de los centros nerviosos de las Aves , 1888 .

[28]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[29]  Large Populations of Coupled Chemical Oscillators , 1980 .

[30]  R. Eckert,et al.  A voltage‐sensitive persistent calcium conductance in neuronal somata of Helix. , 1976, The Journal of physiology.

[31]  R. Llinás,et al.  Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. , 1976, Proceedings of the National Academy of Sciences of the United States of America.