Isokinetic relationships at the thermal decomposition of tetranuclear copper(II)‐complexes

A dependence of the activation energy upon the extent of conversion has been discovered for the thermal decomposition of Cu4OCl6L4 with piperidine (1), morpholine (2), and triphenylphosphine oxide (3) as the ligand (L). Within the interval of conversions 0–0.3 the process shows a decrease in the activation energy (230–130 (1), 130–50 (2), and 200–100 (3) kJ mol−1). The processes considered show an isokinetic relationship with Tiso = 255 ± 15 K which corresponds to a vibrational frequency of viso = 177 ± 10 cm−1. This value accords well with IR absorption bands assigned to the stretching vibration in the trigonal CuCl3 chromophore as predicted by theory. Based on this, an assumption about the CuCl3-group as a central site of the reaction can be made. The IR- and X-ray data are presented to support the assumption made. © 1995 John Wiley & Sons, Inc.

[1]  V. Jorík,et al.  On the relationship between the structures of Cu(II) complexes and the course of their thermal decomposition , 2007 .

[2]  W. Linert Mechanistic and structural investigations based on the isokinetic relationship , 1994 .

[3]  C. Strydom,et al.  The thermal decomposition of zirconium sulphate hydrate , 1993 .

[4]  Sergey Vyazovkin,et al.  An approach to the solution of the inverse kinetic problem in the case of complex processes: Part 4. Chemical reaction complicated by diffusion , 1993 .

[5]  P. Weinberger,et al.  Vibrational spectroscopy to analyze peripheral isomerism in tetranuclear mixed halide copper(II)-complexes , 1993 .

[6]  W. Linert,et al.  Structural and electronic responses of coordination compounds to changes in the molecule and molecular environment , 1992 .

[7]  H. S. Ray,et al.  Non-isothermal kinetics: some merits and limitations , 1992 .

[8]  Wolfgang Linert,et al.  Thermodynamic implications of substituent and solvent effects on reactivity , 1992, J. Chem. Inf. Comput. Sci..

[9]  H. Langfelderová,et al.  The relationship between the structures of Cu(ii) coordination compounds and their thermal decomposition , 1991 .

[10]  J. Mroziňski,et al.  Synthesis, Magnetism and X-Ray Structure of μl4-Oxo-Hexa-μ2-Chlorotetrakis(Benzimidazole)Copper(II) , 1991 .

[11]  Sergey Vyazovkin,et al.  An approach to the solution of the inverse kinetic problem in the case of complex processes , 1990 .

[12]  S. Vyazovkin,et al.  Thermal decomposition of tetrazolePart 11. Kinetic analysis , 1990 .

[13]  Wolfgang Linert,et al.  The use of the isokinetic relationship and molecular mechanics to investigate molecular interactions in inclusion complexes of cyclodextrins , 1989 .

[14]  W. Linert,et al.  The isokinetic relationship , 1989 .

[15]  S. Vyazovkin,et al.  Estimation of the pre-exponential factor in the isoconversional calculation of effective kinetic parameters , 1988 .

[16]  B. Testa,et al.  Thermodynamics and mechanism of partitioning of pyridylalkanamides in n-octanol/ water and di-n-butyl ether/water , 1987 .

[17]  S. Levchik,et al.  Isoparametric kinetic relations for chemical transformations in condensed substances (Analytical survey). II. Reactions involving the participation of solid substances , 1985 .

[18]  Á. Irabien,et al.  Kinetic interpretation of the thermal decomposition of anilinium octamolybdate at different heating rate , 1984 .

[19]  H. Dieck Tetranuclear complexes of trigonal-bipyramidal copper(II). III. Electronic and infrared spectra☆ , 1973 .

[20]  N. S. Gill,et al.  Preparation and properties of .mu.4-oxohexa-.mu.-chlorotetrakis[(2-methylpyridine)copper(II)] hydrate, Cu4OCl6(3-mepy)4.xH2O, and Di-.mu.-methoxobis[chloro(2-methylpyridine)copper(II)], [CuCl(OCH3)(2-mepy)]2, and x-ray structure analysis of Cu4OCl6(2-mepy)4.xH2O , 1970 .

[21]  J. Bertrand The structure of 4-oxo-hexa--bromo-tetra[amminecopper(II)] , 1970 .

[22]  H. T. Dieck,et al.  Vierkernige Komplexe mit trigonal‐bipyramidal koordiniertem Kupfer(II), II. Synthese und Substitution an der axialen Position , 1969 .

[23]  J. Kelley,et al.  Preparation, structure, and properties of the tetramethylammonium salt of .mu.4-oxo-hexa-.mu.-chloro-tetra(chlorocuprate(II)) , 1969 .

[24]  H. Bock,et al.  Über Kupfer‐Komplexe Cu4O(Amin)4(Hal)6 mit tetraedrisch koodiniertem sauerstoff , 1968 .

[25]  J. A. Bertrand Five-coordinate complexes. III. Structure and properties of .mu.4-oxohexa-.mu.-chlorotetrakis[(triphenylphosphine oxide)-copper(II)] , 1967 .

[26]  J. Dunitz,et al.  The crystal and molecular structure of μ4-oxohexa-μ-chlorotetrakis(pyridine copper (II)), Cu4Cl6O.4C5H5N, a polynuclear copper complex , 1967 .

[27]  J. Kelley,et al.  Five-Coordinate Complexes. II.1 Trigonal Bipyramidal Copper(II) in a Metal Atom Cluster , 1966 .

[28]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.

[29]  L. Hammett,et al.  Physical organic chemistry : reaction rates, equilibria, and mechanisms , 1940 .