Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data

Abstract The underlying study introduces a numerical modeling framework and a comparison with experimental data of hydraulic fracture in dense low-permeable brittle rocks. This is based on the continuum theory of porous media (TPM) extended by a diffusive phase-field modeling (PFM) approach. Proceeding with a biphasic material consisting of a solid and a fluid phase, the mechanical behaviors, such as the solid deformation and the pore-fluid flow are described using the macroscopic TPM. The hydraulically-driven cracking is modeled in the sense of brittle fracture using the energy-minimization-based PFM procedure, which employs a scalar-valued phase-field variable to approximate the sharp edge of the crack by a diffusive transition zone. The combined TPM-PFM approach allows to model additional related phenomena, such as the permanent local changes of the intrinsic permeability and the volume fractions of the constituents in the crack and at the crack-domain interface. For the purpose of model calibration, simulations of 2D and 3D initial-boundary-value problems (IBVP) are introduced and compared to laboratory experiments on hydraulic fracturing. The results show that experimentally-derived pressure curves and estimated fracture lengths are well predicted in the proposed numerical simulations. It is also worth mentioning that the TPM-PFM approach can straightforwardly be implemented in common continuum finite element packages, allowing for a robust solution of hydraulic fracture problems.

[1]  L. De Lorenzis,et al.  Phase-field modeling of fracture in variably saturated porous media , 2018 .

[2]  A. Concha Theory of Mixtures , 2014 .

[3]  M. Frémond,et al.  Non-Smooth Thermomechanics , 2001 .

[4]  Ralf Müller,et al.  A continuum phase field model for fracture , 2010 .

[5]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[6]  A. W. Bishop,et al.  The Principle of Effective Stress , 1959 .

[7]  Wolfgang Ehlers,et al.  A phase-field approach embedded in the Theory of Porous Media for the description of dynamic hydraulic fracturing , 2017 .

[8]  Hermann G. Matthies,et al.  Algorithms for strong coupling procedures , 2006 .

[9]  E. Cruz-Chú,et al.  A comparative molecular dynamics-phase-field modeling approach to brittle fracture , 2016 .

[10]  Julien Yvonnet,et al.  A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography , 2016 .

[11]  Bernhard A. Schrefler,et al.  Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations , 2018 .

[12]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[13]  WaiChing Sun,et al.  Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock , 2018, Acta Geotechnica.

[14]  Bernhard A. Schrefler,et al.  A method for 3-D hydraulic fracturing simulation , 2012, International Journal of Fracture.

[15]  B. Schrefler,et al.  Hydraulic fracturing and its peculiarities , 2014 .

[16]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[17]  WaiChing Sun,et al.  A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics , 2018, Computer Methods in Applied Mechanics and Engineering.

[18]  Peter Wriggers,et al.  Phase-field modeling of brittle fracture using an efficient virtual element scheme , 2018, Computer Methods in Applied Mechanics and Engineering.

[19]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[20]  R. M. Bowen Part I – Theory of Mixtures , 1976 .

[21]  Julien Réthoré,et al.  A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks , 2008 .

[22]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[23]  M. Wheeler,et al.  A quasi-static phase-field approach to pressurized fractures , 2015 .

[24]  WaiChing Sun,et al.  Cracking and damage from crystallization in pores: Coupled chemo-hydro-mechanics and phase-field modeling , 2018, Computer Methods in Applied Mechanics and Engineering.

[25]  Emmanuel M Detournay,et al.  Mechanics of Hydraulic Fractures , 2016 .

[26]  C. Miehe,et al.  Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture , 2015 .

[27]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[28]  P. Haupt Foundation of Continuum Mechanics , 1993 .

[29]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[30]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[31]  Martin Schanz,et al.  A comparative study of Biot's theory and the linear Theory of Porous Media for wave propagation problems , 2003 .

[32]  Emmanuel M Detournay,et al.  Comparison between laboratory experiments and coupled simulations of saucer-shaped hydraulic fractures in homogeneous brittle-elastic solids , 2013 .

[33]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[34]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[35]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[36]  I. N. Sneddon The distribution of stress in the neighbourhood of a crack in an elastic solid , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  J Alcoverro,et al.  The effective stress principle , 2003 .

[38]  Thomas-Peter Fries,et al.  The XFEM with an Explicit-Implicit Crack Description for Hydraulic Fracture Problems , 2013 .

[39]  S. Turek,et al.  A new monolithic Newton‐multigrid‐based FEM solution scheme for large strain dynamic poroelasticity problems , 2017 .

[40]  Y. Heider,et al.  A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine , 2018, Computational Materials Science.

[41]  B. Markert A survey of selected coupled multifield problems in computational mechanics , 2013 .

[42]  Mary F. Wheeler,et al.  Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches , 2016, J. Comput. Appl. Math..

[43]  R. de Boer,et al.  Theory of Porous Media , 2020, Encyclopedia of Continuum Mechanics.

[44]  Gen Li,et al.  Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique , 2012, Rock Mechanics and Rock Engineering.

[45]  Bernd Markert,et al.  A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua , 2007 .

[46]  T. Fries,et al.  The XFEM with an Implicit‐Explicit Crack Description for a Plane‐Strain Hydraulic Fracture Problem , 2013 .

[47]  J. H. Curran,et al.  A three‐dimensional hydraulic fracturing simulator , 1989 .

[48]  Mary F. Wheeler,et al.  A Phase-Field Method for Propagating Fluid-Filled Fractures Coupled to a Surrounding Porous Medium , 2015, Multiscale Model. Simul..

[49]  G. Irwin ANALYSIS OF STRESS AND STRAINS NEAR THE END OF A CRACK TRAVERSING A PLATE , 1957 .

[50]  R. Juanes,et al.  Phase field model of fluid‐driven fracture in elastic media: Immersed‐fracture formulation and validation with analytical solutions , 2017 .

[51]  Julien Réthoré,et al.  A two‐scale approach for fluid flow in fractured porous media , 2006 .

[52]  R. D. Boer,et al.  The development of the concept of effective stresses , 1990 .

[53]  Christian Miehe,et al.  Phase‐field modeling of ductile fracture at finite strains: A robust variational‐based numerical implementation of a gradient‐extended theory by micromorphic regularization , 2017 .

[54]  Mary F. Wheeler,et al.  Phase-field modeling of proppant-filled fractures in a poroelastic medium , 2016 .

[55]  Bernd Markert,et al.  Coupled Multi-Field Continuum Methods for Porous Media Fracture , 2015 .

[56]  C. Landis,et al.  Phase-field modeling of hydraulic fracture , 2016 .

[57]  Peter Wriggers,et al.  A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling , 2018 .

[58]  J. M. Huyghe,et al.  Propagating Cracks in Saturated Ionized Porous Media , 2011 .

[59]  Xi Zhang,et al.  Numerical methods for hydraulic fracture propagation: a review of recent trends , 2018 .

[60]  Jose Adachi,et al.  Computer simulation of hydraulic fractures , 2007 .

[61]  Enrique J. Galvez,et al.  Modern Introductory Physics , 1998 .

[62]  B. Blanpain,et al.  An introduction to phase-field modeling of microstructure evolution , 2008 .

[63]  Y. Heider,et al.  A phase-field modeling approach of hydraulic fracture in saturated porous media , 2017 .

[64]  W. Ehlers Foundations of multiphasic and porous materials , 2002 .

[65]  Christian Miehe,et al.  Phase field modeling of fracture in porous plasticity: A variational gradient-extended Eulerian framework for the macroscopic analysis of ductile failure , 2016 .

[66]  W. Ehlers,et al.  Comparison of monolithic and splitting solution schemes for dynamic porous media problems , 2009 .

[67]  Blaise Bourdin,et al.  A Variational Approach to the Numerical Simulation of Hydraulic Fracturing , 2012 .

[68]  Christian Hesch,et al.  A high-order finite deformation phase-field approach to fracture , 2017 .

[69]  Long Chen FINITE ELEMENT METHOD , 2013 .

[70]  A. Bunger,et al.  Experiments versus theory for the initiation and propagation of radial hydraulic fractures in low‐permeability materials , 2017 .