COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD

We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of {approx}10{sup -4} primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10{sup -6} and 10{sup -7}), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated bymore » the birth ring ('collision dominated') when the optical depth reaches a critical value of {tau} {approx} v/c, where v is the local Keplerian speed.« less

[1]  F. Whipple,et al.  The Poynting-Robertson effect on meteor orbits , 1950 .

[2]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[3]  R. Stencel,et al.  Model of a Kuiper Belt Small Grain Population and Resulting Far-Infrared Emission , 1995 .

[4]  J. Liou,et al.  Signatures of the Giant Planets Imprinted on the Edgeworth-Kuiper Belt Dust Disk , 1999 .

[5]  Paolo Tanga,et al.  The Velocity–Size Relationship for Members of Asteroid Families and Implications for the Physics of Catastrophic Collisions , 1999 .

[6]  Trujillo,et al.  Population of the Scattered Kuiper Belt. , 2000, The Astrophysical journal.

[7]  Michael E. Brown The Inclination Distribution of the Kuiper Belt , 2001 .

[8]  Chadwick A. Trujillo,et al.  The Radial Distribution of the Kuiper Belt , 2001 .

[9]  Marc J. Kuchner,et al.  The Geometry of Resonant Signatures in Debris Disks with Planets , 2002, astro-ph/0209261.

[10]  Heidelberg,et al.  Origins of Solar System Dust beyond Jupiter , 2002 .

[11]  R. Malhotra,et al.  A Study of the Dynamics of Dust from the Kuiper Belt: Spatial Distribution and Spectral Energy Distribution , 2002, astro-ph/0207350.

[12]  M. Holman,et al.  Structure in the Dusty Debris around Vega , 2002 .

[13]  Resonance occupation in the Kuiper belt: Case examples of the 5:2 and Trojan resonances , 2003, astro-ph/0301458.

[14]  A. Moro-martin,et al.  Dynamical Models of Kuiper Belt Dust in the Inner and Outer Solar System , 2003, astro-ph/0506703.

[15]  M. C. Wyatt,et al.  RESONANT TRAPPING OF PLANETESIMALS BY PLANET MIGRATION: DEBRIS DISK CLUMPS AND VEGA'S SIMILARITY TO THE SOLAR SYSTEM , 2003 .

[16]  Deep Keck Adaptive Optics Searches for Extrasolar Planets in the Dust of Eridani and Vega , 2003, astro-ph/0303282.

[17]  S. Dermott,et al.  Resonant Structure in the Kuiper Disk: An Asymmetric Plutino Disk , 2003 .

[18]  Massimo Marengo,et al.  First Look at the Fomalhaut Debris Disk with the Spitzer Space Telescope , 2004 .

[19]  Marc J. Kuchner,et al.  The Dynamical Influence of a Planet at Semimajor Axis 3.4 A on the Dust around Epsilon Eridani , 2004 .

[20]  W. Holland,et al.  The debris disc around τ Ceti: a massive analogue to the Kuiper Belt , 2004 .

[21]  E. Chiang,et al.  A Signature of Planetary Migration: The Origin of Asymmetric Capture in the 2:1 Resonance , 2004, astro-ph/0410086.

[22]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[23]  Neptune’s Migration into a Stirred-Up Kuiper Belt: A Detailed Comparison of Simulations to Observations , 2005, astro-ph/0507319.

[24]  S. Wolf,et al.  The Formation and Evolution of Planetary Systems (FEPS): Discovery of an Unusual Debris System Associated with HD 12039 , 2005, astro-ph/0510294.

[25]  et al,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[26]  F. Spahn,et al.  Evolution of a Keplerian disk of colliding and fragmenting particles: a kinetic model with application to the Edgeworth–Kuiper belt , 2005 .

[27]  M. Wyatt The Insignificance of P-R drag in detectable extrasolar planetesimal belts , 2005, astro-ph/0501038.

[28]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[29]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[30]  DUST DYNAMICS, SURFACE BRIGHTNESS PROFILES, AND THERMAL SPECTRA OF DEBRIS DISKS: THE CASE OF AU MICROSCOPII , 2005, astro-ph/0510527.

[31]  T. Löhne,et al.  Dust distributions in debris disks: effects of gravity, radiation pressure and collisions , 2006 .

[32]  K. Y. L. Su,et al.  Steady State Evolution of Debris Disks around A Stars , 2007 .

[33]  R. Smith,et al.  Transience of Hot Dust around Sun-like Stars , 2006, astro-ph/0610102.

[34]  Friedrich-Schiller-Universitat Jena,et al.  On the nature of clumps in debris disks , 2006, astro-ph/0610871.

[35]  Darin Ragozzine,et al.  A collisional family of icy objects in the Kuiper belt , 2007, Nature.

[36]  D. Jewitt,et al.  The Kuiper Belt and Other Debris Disks , 2008, 0808.3224.

[37]  Marc J. Kuchner,et al.  The Detectability of Exo-Earths and Super-Earths Via Resonant Signatures in Exozodiacal Clouds , 2008, 0810.2702.

[38]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .

[39]  UK,et al.  The history of the Solar system's debris disc: observable properties of the Kuiper belt , 2009, 0906.3755.

[40]  Bertrand Mennesson,et al.  AN INTERFEROMETRIC STUDY OF THE FOMALHAUT INNER DEBRIS DISK. I. NEAR-INFRARED DETECTION OF HOT DUST WITH VLTI/VINCI , 2009, 0908.3133.

[41]  K. Y. L. Su,et al.  EXPLORATIONS BEYOND THE SNOW LINE: SPITZER/IRS SPECTRA OF DEBRIS DISKS AROUND SOLAR-TYPE STARS , 2009, 0909.0058.

[42]  M. Kuchner,et al.  INTERSTELLAR MEDIUM SCULPTING OF THE HD 32297 DEBRIS DISK , 2009, 0908.4368.

[43]  Peter Plavchan,et al.  NEW DEBRIS DISKS AROUND YOUNG, LOW-MASS STARS DISCOVERED WITH THE SPITZER SPACE TELESCOPE , 2009, 0904.0819.

[44]  Marc J. Kuchner,et al.  A NEW ALGORITHM FOR SELF-CONSISTENT THREE-DIMENSIONAL MODELING OF COLLISIONS IN DUSTY DEBRIS DISKS , 2009, 0909.2227.

[45]  K. Stapelfeldt,et al.  EPSILON ERIDANI'S PLANETARY DEBRIS DISK: STRUCTURE AND DYNAMICS BASED ON SPITZER AND CALTECH SUBMILLIMETER OBSERVATORY OBSERVATIONS , 2008, 0810.4564.

[46]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[47]  M. Payne,et al.  Formation and Evolution of Planetary Systems , 2010 .