Vesta's mineralogical composition as revealed by the visible and infrared spectrometer on Dawn

The Dawn spacecraft mission has provided extensive new and detailed data on Vesta that confirm and strengthen the Vesta–howardite–eucrite–diogenite (HED) meteorite link and the concept that Vesta is differentiated, as derived from earlier telescopic observations. Here, we present results derived by newly calibrated spectra of Vesta. The comparison between data from the Dawn imaging spectrometer—VIR—and the different class of HED meteorites shows that average spectrum of Vesta resembles howardite spectra. Nevertheless, the Vesta spectra at high spatial resolution reveal variations in the distribution of HED‐like mineralogies on the asteroid. The data have been used to derive HED distribution on Vesta, reported in Ammannito et al. (2013), and to compute the average Vestan spectra of the different HED lithologies, reported here. The spectra indicate that, not only are all the different HED lithologies present on Vesta, but also carbonaceous chondritic material, which constitutes the most abundant inclusion type found in howardites, is widespread. However, the hydration feature used to identify carbonaceous chondrite material varies significantly on Vesta, revealing different band shapes. The characteristic of these hydration features cannot be explained solely by infalling of carbonaceous chondrite meteorites and other possible origins must be considered. The relative proportion of HEDs on Vesta's surface is computed, and results show that most of the vestan surface is compatible with eucrite‐rich howardites and/or cumulate or polymict eucrites. A very small percentage of surface is covered by diogenite, and basaltic eucrite terrains are relatively few compared with the abundance of basaltic eucrites in the HED suite. The largest abundance of diogenitic material is found in the Rheasilvia region, a deep basin, where it clearly occurs below a basaltic upper crust. However, diogenite is also found elsewhere; although the depth to diogenite is consistent with one magma ocean model, its lateral extent is not well constrained.

[1]  Alessandro Frigeri,et al.  Composition and mineralogy of dark material units on Vesta , 2014 .

[2]  Richard P. Binzel,et al.  Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites , 2013 .

[3]  Alessandro Frigeri,et al.  Vestan lithologies mapped by the visual and infrared spectrometer on Dawn , 2013 .

[4]  Eleonora Ammannito,et al.  Composition of the Rheasilvia basin, a window into Vesta's interior , 2013 .

[5]  M. C. De Sanctis,et al.  Distinctive space weathering on Vesta from regolith mixing processes , 2012, Nature.

[6]  C. Russell,et al.  Dark material on Vesta from the infall of carbonaceous volatile-rich material , 2012, Nature.

[7]  Alessandro Frigeri,et al.  DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE DAWN MISSION , 2012 .

[8]  C. Russell,et al.  Pitted Terrain on Vesta and Implications for the Presence of Volatiles , 2012, Science.

[9]  Olivier Forni,et al.  Elemental Mapping by Dawn Reveals Exogenic H in Vesta’s Regolith , 2012, Science.

[10]  H Y McSween,et al.  Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta , 2012, Science.

[11]  R. Jaumann,et al.  The Violent Collisional History of Asteroid 4 Vesta , 2012, Science.

[12]  R. Jaumann,et al.  Vesta’s Shape and Morphology , 2012, Science.

[13]  T N Titus,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[14]  C. Russell,et al.  Photometric Properties of Vesta , 2012, Proceedings of the International Astronomical Union.

[15]  C. Russell,et al.  Visible Color and Photometry of Bright Materials on Vesta , 2012 .

[16]  C. Russell,et al.  Types and Distribution of Bright Materials in 4 Vesta , 2012 .

[17]  C. Russell,et al.  Composition and Mineralogy of Dark Material Deposits on Vesta , 2012 .

[18]  A. Bini,et al.  The VIR Spectrometer , 2011 .

[19]  H. McSween,et al.  HED Meteorites and Their Relationship to the Geology of Vesta and the Dawn Mission , 2011 .

[20]  B. Schmitt,et al.  NIR spectral trends of HED meteorites: Can we discriminate between the magmatic evolution, mechanical mixing and observation geometry effects? , 2011 .

[21]  D Tiphene,et al.  The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS , 2011, Science.

[22]  M. Bizzarro,et al.  RAPID TIMESCALES FOR MAGMA OCEAN CRYSTALLIZATION ON THE HOWARDITE–EUCRITE–DIOGENITE PARENT BODY , 2011 .

[23]  G. Filacchione,et al.  Spectral and mineralogical characterization of inner main-belt V-type asteroids , 2011 .

[24]  D. Mittlefehldt,et al.  MIL 03443, a dunite from asteroid 4 Vesta: Evidence for its classification and cumulate origin , 2011 .

[25]  H. McSween,et al.  The origin of Vesta’s crust: Insights from spectroscopy of the Vestoids , 2011 .

[26]  Carle M. Pieters,et al.  Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3) , 2011 .

[27]  A. Coradini,et al.  Vesta and Ceres: Crossing the History of the Solar System , 2011, 1106.0152.

[28]  L. McFadden,et al.  Mineralogical characterization of some V‐type asteroids, in support of the NASA Dawn mission★ , 2011 .

[29]  T. Maue,et al.  The Dawn Framing Camera , 2011 .

[30]  S. Marchi,et al.  ON THE PUZZLE OF SPACE WEATHERING ALTERATION OF BASALTIC ASTEROIDS , 2010, 1009.0179.

[31]  C. Russell,et al.  Photometric mapping of Asteroid (4) Vesta’s southern hemisphere with Hubble Space Telescope , 2010 .

[32]  A. W. Beck,et al.  Diogenites as polymict breccias composed of orthopyroxenite and harzburgite , 2010 .

[33]  N. Moskovitz,et al.  A spectroscopic comparison of HED meteorites and V-type asteroids in the inner Main Belt , 2010, 1003.2580.

[34]  M. D. Dyar,et al.  Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 , 2009, Science.

[35]  Lori M. Feaga,et al.  Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft , 2009, Science.

[36]  E. Scott,et al.  Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites , 2009 .

[37]  Roger N. Clark,et al.  Detection of Adsorbed Water and Hydroxyl on the Moon , 2009, Science.

[38]  I. Franchi,et al.  Geochemistry of diogenites: Still more diversity in their parental melts , 2008 .

[39]  J. Mustard,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature , 2007 .

[40]  Jean-Pierre Bibring,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface , 2007 .

[41]  R. Duffard,et al.  The inner region of the asteroid Main Belt: a spectroscopic and dynamic analysis , 2006 .

[42]  G. Piccioni,et al.  On-ground characterization of Rosetta/VIRTIS-M. II. Spatial and radiometric calibrations , 2006 .

[43]  G. Piccioni,et al.  On-ground characterization of Rosetta/VIRTIS-M. I. Spectral and geometrical calibrations , 2006 .

[44]  Akira Fujiwara,et al.  Near-Infrared Spectral Results of Asteroid Itokawa from the Hayabusa Spacecraft , 2006, Science.

[45]  M. Fulchignoni,et al.  Asteroid colors: a novel tool for magnetic field detection? , 2006 .

[46]  A. Rivkin,et al.  Rotationally-resolved spectroscopy of Vesta I: 2–4 μm region , 2006 .

[47]  A. Jambon,et al.  Widespread magma oceans on asteroidal bodies in the early Solar System , 2005, Nature.

[48]  M. Fulchignoni,et al.  Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission , 2005 .

[49]  D. Mittlefehldt Ibitira: A basaltic achondrite from a distinct parent asteroid and implications for the Dawn mission , 2005 .

[50]  R. H. Brown,et al.  The Cassini Visual And Infrared Mapping Spectrometer (Vims) Investigation , 2004 .

[51]  J. Licandro,et al.  Mineralogical characterization of some basaltic asteroids in the neighborhood of (4) Vesta: first results , 2004 .

[52]  T. Hiroi,et al.  Spectroscopic Observations of Asteroid 4 Vesta from 1.9 to 3.5 micron: Evidence of Hydrated and/or Hydroxylated Minerals , 2004 .

[53]  T. Hiroi,et al.  Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta , 2003 .

[54]  H. Wiesmann,et al.  Fossil 26Al and 53Mn in the Asuka 881394 eucrite: evidence of the earliest crust on asteroid 4 Vesta , 2003 .

[55]  Klaus Keil,et al.  Geological History of Asteroid 4 Vesta: The "Smallest Terrestrial Planet" , 2002 .

[56]  Richard P. Binzel,et al.  Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences , 2001 .

[57]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[58]  Florczak,et al.  Discovery of a basaltic asteroid in the outer main belt , 2000, Science.

[59]  Gabriele Arnold,et al.  A Model of Spectral Albedo of Particulate Surfaces: Implications for Optical Properties of the Moon , 1999 .

[60]  U. Fink,et al.  Virtis : an imaging spectrometer for the rosetta mission , 1998 .

[61]  P. Warren Magnesium oxide‐iron oxide mass balance constraints and a more detailed model for the relationship between eucrites and diogenites , 1997 .

[62]  J. Papike,et al.  Petrogenetic models for magmatism on the eucrite parent body: Evidence from orthopyroxene in diogenites , 1997 .

[63]  Kevin Righter,et al.  A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites , 1997 .

[64]  Richard P. Binzel,et al.  Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results , 1997 .

[65]  Michael J. Gaffey,et al.  Surface Lithologic Heterogeneity of Asteroid 4 Vesta , 1997 .

[66]  P. Farinella,et al.  Origin and evolution of the Vesta asteroid family. , 1996 .

[67]  Jean-Michel Reess,et al.  VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission , 1996, Optics & Photonics.

[68]  M. Gaffey,et al.  Geologic Mapping of Vesta from 1994 Hubble Space Telescope Images , 1995 .

[69]  T. Hiroi Grain Sizes and Mineral Compositions of Surface Regoliths of Vesta-like Asteroids , 1995 .

[70]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[71]  T. Hiroi,et al.  Grain size of the surface regolith of asteroid 4 Vesta estimated from its reflectance spectrum in comparison with HED meteorites , 1994 .

[72]  D. Mittlefehldt The genesis of diogenites and HED parent body petrogenesis , 1994 .

[73]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[74]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[75]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[76]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[77]  U. Fink,et al.  Spectroscopic evidence for two achondrite parent bodies: asteroids 349 Dembowska and 4 Vesta , 1980 .

[78]  G. Consolmagno,et al.  Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts] , 1977 .

[79]  T. McCord,et al.  Vesta - The first pyroxene band from new spectroscopic measurements , 1977 .

[80]  E. Anders,et al.  Composition of the Eucrite Parent Body , 1976 .

[81]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[82]  D. R. Lloyd The infrared spectra of minerals , 1975 .

[83]  U. Fink,et al.  Infrared spectral observations of asteroid 4 Vesta , 1975 .

[84]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[85]  B. Hapke Theoretical Photometric Function for the Lunar Surface. , 1963 .

[86]  R. Jaumann,et al.  Dark Material On Vesta: Synthesis And Interpretations From Dawn Observations , 2012 .

[87]  Elsevier Ltd Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites , 2009 .

[88]  Andrew Scott Rivkin,et al.  Hydrated Minerals on Asteroids: The Astronomical Record , 2003 .

[89]  M. Malin,et al.  Near-IR Reflectance Spectroscopy of 433 Eros from the NIS Instrument on the NEAR Mission: I. Low Phase Angle Observations , 2002 .

[90]  Angioletta Coradini,et al.  VIRTIS: The imaging spectrometer of the Rosetta mission , 1999 .

[91]  S. Squyres,et al.  Photometric studies of the satellites of Jupiter using Voyager imaging data. , 1980 .