Smart nonlinear diffusion: a probabilistic approach

In this paper, a stochastic interpretation of nonlinear diffusion equations used for image filtering is proposed. This is achieved by relating the problem of evolving/smoothing images to that of tracking the transition probability density functions of an underlying random process. We show that such an interpretation of, e.g., Perona-Malik equation, in turn allows additional insight and sufficient flexibility to further investigate some outstanding problems of nonlinear diffusion techniques. In particular, upon unraveling the limitations as well as the advantages of such an equation, we are able to propose a new approach which is demonstrated to improve performance over existing approaches and, more importantly, to lift the longstanding problem of a stopping criterion for a nonlinear evolution equation with no data term constraint. Substantiating examples in image enhancement and segmentation are provided.

[1]  Hamid Krim,et al.  Towards Bridging Scale-Space and Multiscale Frame Analyses , 2001 .

[2]  Song-Chun Zhu,et al.  Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Wesley E. Snyder,et al.  Image Relaxation: Restoration and Feature Extraction , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  J. Quadrat Numerical methods for stochastic control problems in continuous time , 1994 .

[5]  Alan S. Willsky,et al.  Image segmentation and edge enhancement with stabilized inverse diffusion equations , 2000, IEEE Trans. Image Process..

[6]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[7]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[8]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[9]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[10]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  H. Kunita Stochastic differential equations and stochastic flows of diffeomorphisms , 1984 .

[12]  Bart M. ter Haar Romeny Geometry-driven diffusion , 2003 .

[13]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[15]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[16]  Anuj Srivastava,et al.  Jump-diffusion processes on matrix Lie groups for Bayesian inference , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[17]  Niklas Nordström,et al.  Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection , 1990, Image Vis. Comput..

[18]  Joseph A. O'Sullivan,et al.  Automatic target recognition organized via jump-diffusion algorithms , 1997, IEEE Trans. Image Process..

[19]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[20]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[21]  J. Pesquet,et al.  On the Statistics of Best Bases Criteria , 1995 .

[22]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[23]  Jitendra Malik,et al.  A network for multiscale image segmentation , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[24]  Jérôme Monteil,et al.  A New Interpretation and improvement of the Nonlinear Anisotropic Diffusion for Image Enhancement , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Hamid Krim,et al.  A stochastic diffusion approach to signal denoising , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[26]  A. Ben Hamza,et al.  Unifying probabilistic and variational estimation , 2002, IEEE Signal Process. Mag..

[27]  Guillermo Sapiro,et al.  Affine invariant scale-space , 1993, International Journal of Computer Vision.

[28]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[30]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[31]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[32]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  S. Mallat A wavelet tour of signal processing , 1998 .

[34]  Hamid Krim,et al.  Nonlinear diffusion: A probabilistic view , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[35]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[37]  Terry Caelli,et al.  Generalized Spatio-Chromatic Diffusion , 2002, IEEE Trans. Pattern Anal. Mach. Intell..