Robust high-fidelity universal set of quantum gates through non-adiabatic rapid passage

We show how a robust high-fidelity universal set of quantum gates can be implemented using a single form of non-adiabatic rapid passage whose parameters are optimized to maximize gate fidelity and reward gate robustness. Each gate in the universal set is found to operate with a fidelity ℱ in the range 0.99988 < ℱ < 0.99999, and to require control parameters with no more than 14 bit (1 part in 104) precision. Such precision is within reach of commercially available arbitrary waveform generators, so that an experimental study of this approach to high-fidelity universal quantum control appears feasible.

[1]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[2]  F. Gaitan,et al.  Berry's Phase in the Presence of a Non-Adiabatic Environment , 2008 .

[3]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[4]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[5]  Frank Gaitan Quantum Error Correction and Fault Tolerant Quantum Computing , 2008 .

[6]  Frank Gaitan Temporal Interferometry: A Mechanism for Controlling Qubit Transitions During Twisted Rapid Passage , 2002 .

[7]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[8]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Frank Gaitan,et al.  Non-adiabatic rapid passage , 2003 .

[10]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[11]  Ran Li,et al.  High-fidelity universal quantum gates through group-symmetrized rapid passage , 2010, 1004.0710.

[12]  Ran Li,et al.  High fidelity universal set of quantum gates using non-adiabatic rapid passage , 2008, Quantum Inf. Comput..

[13]  F. Gaitan,et al.  Controlling qubit transitions through quantum interference during nonadiabatic rapid passage , 2005 .

[14]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[15]  Ran Li,et al.  High-fidelity single-qubit gates using non-adiabatic rapid passage , 2007, Quantum Inf. Comput..

[16]  Controlling qubit transitions during non-adiabatic rapid passage through quantum interference , 2004, quant-ph/0402108.

[17]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  William H. Press,et al.  Numerical recipes , 1990 .

[19]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[20]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .