Plans for a Next-Generation Low-Energy Antiproton Facility

Current antiproton physics as carried out at the Antiproton Decelerator (AD) of CERN is focussed on precision spectroscopy of antiprotonic atoms and antihydrogen for tests of CPT symmetry and QED. For efficient stopping of antiprotons, the energy of the AD is however still too high. A new facility called FLAIR (Facility for Low-energy Antiproton and Ion Research) has recently been proposed that includes cooled beams of antiprotons at energies below 100 keV. This will allow for a much higher rate of trapped antiprotons and therefore greatly advance the currently performed experiments. Furthermore, the availability of continuous beams will make many new experiments possible.

[1]  E. A. Hessels,et al.  Background-free observation of cold antihydrogen with field-ionization analysis of its states. , 2002, Physical review letters.

[2]  A. Fontana,et al.  Spatial distribution of cold antihydrogen formation. , 2005, Physical review letters.

[3]  Joachim Ullrich,et al.  Recoil-ion and electron momentum spectroscopy: reaction-microscopes , 2003 .

[4]  D. Gotta,et al.  Precision spectroscopy of light exotic atoms , 2004 .

[5]  E. A. Hessels,et al.  First laser-controlled antihydrogen production. , 2004, Physical review letters.

[6]  A. Fontana,et al.  Production and detection of cold antihydrogen atoms , 2002, Nature.

[7]  F. Hartmann,et al.  Neutron density distributions deduced from antiprotonic atoms. , 2001, Physical review letters.

[8]  M. Nieto,et al.  The arguments against ``antigravity'' and the gravitational acceleration of antimatter , 1991 .

[9]  S. Karshenboim,et al.  Precision physics of simple atomic systems , 2003 .

[10]  A. Kostelecký,et al.  CPT and Lorentz tests in Penning traps , 1998, hep-ph/9809543.

[11]  J. Ullrich,et al.  Projectile-charge sign dependence of four-particle dynamics in helium double ionization. , 2003, Physical review letters.

[12]  Salomon,et al.  Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock , 2000, Physical review letters.

[13]  J. Walz Cold antihydrogen atoms , 2004 .

[14]  Hyperfine structure of antiprotonic helium revealed by a laser-microwave-laser resonance method. , 2002, Physical review letters.

[15]  Hartmann,et al.  Neutron halo in heavy nuclei from antiproton absorption. , 1994, Physical review letters.

[16]  D. Horvath,et al.  Direct measurement of transition frequencies in isolated pHe+ atoms, and new CPT-violation limits on the antiproton charge and mass. , 2003, Physical review letters.

[17]  Kistryn,et al.  Letter of Intent for: PANDA. Strong Interaction Studies with Antiprotons , 2004 .

[18]  P. Riedler,et al.  Antihydrogen production temperature dependence , 2004 .

[19]  Joachim Ullrich,et al.  Cold Target Recoil Ion Momentum Spectroscopy: a &momentum microscope' to view atomic collision dynamics , 2000 .

[20]  L. Tauscher,et al.  Remeasurement of the magnetic moment of the antiproton , 1988 .

[21]  V. B. Berestet͡skiĭ,et al.  Quantum Electrodynamics , 2021, Introduction to Quantum Mechanics.

[22]  U. Uggerhøj,et al.  Antiproton stopping at low energies: confirmation of velocity-proportional stopping power. , 2002, Physical review letters.

[23]  D. Horvath,et al.  Confinement of a large number of antiprotons and production of an ultraslow antiproton beam. , 2005, Physical review letters.

[24]  Alessandro Variola,et al.  High rate production of antihydrogen , 2004 .

[25]  N. Ramsey Atomic Hydrogen Hyperfine Structure Experiments , 1990 .

[26]  Y. Yamazaki,et al.  A possible new scheme to synthesize antihydrogen and to prepare a polarised antihydrogen beam , 2003 .

[27]  T. Yamazaki,et al.  Sub-ppm laser spectroscopy of antiprotonic helium and a CPT-violation limit on the antiprotonic charge and mass. , 2001, Physical review letters.

[28]  G. Dugan,et al.  Mass and magnetic moment of the antiproton by the exotic atom method , 1975 .

[29]  A. Filippi Open problems in low energy antineutron interactions , 2004 .

[30]  G. Gabrielse Atoms made entirely of antimatter: Two methods produce slow antihydrogen , 2005 .

[31]  E. A. Hessels,et al.  First measurement of the velocity of slow antihydrogen atoms. , 2004, Physical review letters.

[32]  Yasunori Yamazaki,et al.  Technical developments toward antiprotonic atoms for nuclear structure studies of radioactive nuclei , 2004 .

[33]  I. Meshkov,et al.  Positron storage ring for positronium and antihydrogen generation in flight: The LEPTA project , 2004 .

[34]  U. Uggerhøj,et al.  Stopping power in insulators and metals without charge exchange. , 2004, Physical review letters.

[35]  E. A. Hessels,et al.  Driven production of cold antihydrogen and the first measured distribution of antihydrogen states. , 2002, Physical review letters.

[36]  A. Kostelecký,et al.  $CPT$ and Lorentz Tests in Hydrogen and Antihydrogen , 1998, hep-ph/9810269.

[37]  A. Skrinsky,et al.  The antihydrogen and positronium generation and studies using storage rings , 1997 .

[38]  T. Hänsch,et al.  A Proposal to Measure Antimatter Gravity Using Ultracold Antihydrogen Atoms , 2004 .

[39]  D. Möhl Production of low-energy antiprotons , 1997 .

[40]  A. Kostelecký,et al.  Testing CPT with Anomalous Magnetic Moments , 1997, hep-ph/9707364.

[41]  A. Kostelecký,et al.  $CPT$ violation and the standard model , 1997, hep-ph/9703464.

[42]  P. Kienle Medium energy antiproton absorption, a tool to study neutron halo nuclei , 2004 .

[43]  G. Andler,et al.  CRYRING — a synchrotron, cooler and storage ring , 1993 .

[44]  A. Fontana,et al.  Dynamics of antiproton cooling in a positron plasma during antihydrogen formation , 2004 .

[45]  A. M. Rushton,et al.  Strong interaction and mass measurements using antiprotonic atoms , 1977 .