Heuristic for a new multiobjective scheduling problem

We consider a telecommunication problem in which the objective is to schedule data transmission to be as fast and as cheap as possible. The main characteristic and restriction in solving this multiobjective optimization problem is the very limited computational capacity available. We describe a simple but efficient local search heuristic to solve this problem and provide some encouraging numerical test results. They demonstrate that we can develop a computationally inexpensive heuristic without sacrificing too much in the solution quality.

[1]  Matthias Ehrgott,et al.  Computation of ideal and Nadir values and implications for their use in MCDM methods , 2003, Eur. J. Oper. Res..

[2]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[3]  Klaus Jansen,et al.  Improved Approximation Schemes for Scheduling Unrelated Parallel Machines , 2001, Math. Oper. Res..

[4]  J. Blazewicz,et al.  Selected Topics in Scheduling Theory , 1987 .

[5]  Leslie A. Hall,et al.  Approximation algorithms for scheduling , 1996 .

[6]  Upkar Varshney,et al.  Issues in Emerging 4G Wireless Networks , 2001, Computer.

[7]  Michael A. Trick,et al.  Scheduling Multiple Variable-Speed Machines , 1990, Oper. Res..

[8]  Jean-Charles Billaut,et al.  Multicriteria Scheduling Problems , 2003 .

[9]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[10]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[11]  Kaisa Miettinen,et al.  Experiments with classification-based scalarizing functions in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[12]  A. Nagar,et al.  Multiple and bicriteria scheduling : A literature survey , 1995 .

[13]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[14]  E. Gustafsson,et al.  Always best connected , 2003, IEEE Wirel. Commun..

[15]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[16]  Anne Setämaa-Kärkkäinen,et al.  Best compromise solution for a new multiobjective scheduling problem , 2006, Comput. Oper. Res..

[17]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .