Intrinsic distance lower bound for unbiased estimators on Riemannian manifolds
暂无分享,去创建一个
[1] Ted Chang. Geometrical foundations of asymptotic inference , 2002 .
[2] A. Gualtierotti. H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .
[3] Alfred O. Hero,et al. Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.
[4] Calyampudi R. Rao,et al. Linear Statistical Inference and Its Applications. , 1975 .
[5] R. Kass,et al. Geometrical Foundations of Asymptotic Inference: Kass/Geometrical , 1997 .
[6] C. R. Rao,et al. Linear Statistical Inference and its Applications , 1968 .
[7] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[8] F. N. David,et al. LINEAR STATISTICAL INFERENCE AND ITS APPLICATION , 1967 .
[9] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[10] Thomas L. Marzetta,et al. A simple derivation of the constrained multiple parameter Cramer-Rao bound , 1993, IEEE Trans. Signal Process..
[11] B. C. Ng,et al. On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.
[12] H. Hendriks. A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .
[13] H. V. Trees. Detection, Estimation, And Modulation Theory , 2001 .
[14] José Manuel Corcuera,et al. INTRINSIC ANALYSIS OF STATISTICAL ESTIMATION , 1995 .