A Model for the Estimate of Local Velocity

Motion sensitive cells in the primary visual cortex are not selective to velocity, but rather are directionally selective and tuned to spatiotemporal frequencies. This paper describes physiologically plausible theories for computing velocity from the outputs of spatiotemporally oriented filters and proves several theorems showing how to combine the outputs of a class of frequency tuned filters to detect local image velocity. Furthermore, it can be shown (Grzywacz and Yuille 1990) that the filters' combination may simulate “Pattern” cells in the middle temporal area (MT), while each filter simulates primary visual cortex cells. This suggests that MT's role is not to solve the aperture problem, but to estimate velocities from primary cortex information. The spatial integration that accounts for motion coherence may be postponed to a later cortical stage.

[1]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[2]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[3]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[4]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[6]  Tomaso Poggio,et al.  Computation of motion by real neurons , 1990 .

[7]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[8]  J G Daugman,et al.  Pattern and motion vision without Laplacian zero crossings. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[9]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[10]  A. Yuille,et al.  A model for the estimate of local image velocity by cells in the visual cortex , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[11]  Radu S. Jasinschi Space-time Sampling With Motion Uncertainty: Constraints On Space-time Filtering , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[12]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[13]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[14]  Dennis Gabor,et al.  Theory of communication , 1946 .

[15]  T. Poggio,et al.  A parallel algorithm for real-time computation of optical flow , 1989, Nature.

[16]  Alan L. Yuille,et al.  The Motion Coherence Theory , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[17]  David J. Fleet,et al.  Computation of normal velocity from local phase information , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.