GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run

We report on gravitational wave discoveries from compact binary coalescences detected by Advanced LIGO and Advanced Virgo between 1 April 2019 15:00 UTC and 1 October 2019 15:00. By imposing a false-alarm-rate threshold of two per year in each of the four search pipelines that constitute our search, we present 39 candidate gravitational wave events. At this threshold, we expect a contamination fraction of less than 10%. Of these, 26 candidate events were reported previously in near real-time through GCN Notices and Circulars; 13 are reported here for the first time. The catalog contains events whose sources are black hole binary mergers up to a redshift of ~0.8, as well as events which could plausibly originate from binary neutron stars, neutron star-black hole binaries, or binary black holes. For the latter group, we are unable to determine the nature based on estimates of the component masses and spins from gravitational wave data alone. The range of candidate events which are unambiguously identified as binary black holes (both objects $\geq 3~M_\odot$) is increased compared to GWTC-1, with total masses from $\sim 14~M_\odot$ for GW190924_021846 to $\sim 150~M_\odot$ for GW190521. For the first time, this catalog includes binary systems with asymmetric mass ratios, which had not been observed in data taken before April 2019. Given the increased sensitivity of Advanced LIGO and Advanced Virgo, the detection of 39 candidate events in ~26 weeks of data (~1.5 per week) is consistent with GWTC-1.

M. J. Williams | P. K. Panda | B. A. Boom | S. A. Usman | M. J. Szczepa'nczyk | P. B. Covas | A. L. James | C. Broeck | J. McCann | E. Milotti | P. Ricker | S. Klimenko | A. Mukherjee | S. Oh | M. Fejer | P. Couvares | A. Wade | S. Roy | J. Gair | S. Babak | E. Porter | G. Prodi | S. Fairhurst | D. Hofman | L. Mir | P. Wessels | G. Baltus | D. Keitel | J. Key | F. Khalili | S. Khan | E. Khazanov | N. Kijbunchoo | C. Kim | K. Kim | Y. Kim | P. King | J. Kissel | L. Kleybolte | S. Koehlenbeck | S. Koley | V. Kondrashov | A. Kontos | M. Korobko | W. Korth | D. Kozak | V. Kringel | G. Kuehn | P. Kumar | B. Lackey | M. Landry | J. Lange | B. Lantz | P. Lasky | A. Lazzarini | C. Lazzaro | P. Leaci | S. Leavey | H. Lee | K. Lee | N. Leroy | N. Letendre | Y. Levin | T. G. F. Li | T. Littenberg | M. Lorenzini | V. Loriette | M. Lormand | G. Losurdo | J. Lough | A. Lundgren | Y. Ma | M. Macinnis | D. Macleod | F. Magaña-Sandoval | R. Magee | E. Majorana | I. Maksimovic | N. Man | V. Mandic | V. Mangano | G. Mansell | M. Manske | M. Mantovani | F. Marchesoni | F. Marion | A. Markosyan | E. Maros | F. Martelli | I. Martin | R. Martin | D. Martynov | K. Mason | A. Masserot | T. Massinger | M. Masso-Reid | F. Matichard | N. Mavalvala | R. McCarthy | D. McClelland | S. McCormick | S. McGuire | J. McIver | S. McWilliams | D. Meacher | G. Meadors | A. Melatos | G. Mendell | R. Mercer | M. Merzougui | S. Meshkov | C. Messenger | C. Messick | P. Meyers | H. Miao | H. Middleton | M. Millhouse | Y. Minenkov | C. Mishra | S. Mitra | V. Mitrofanov | G. Mitselmakher | R. Mittleman | S. Mohapatra | M. Montani | C. Moore | D. Moraru | G. Moreno | B. Mours | C. Mow-Lowry | D. Mukherjee | S. Mukherjee | A. Mullavey | J. Munch | P. Murray | I. Nardecchia | L. Naticchioni | R. Nayak | G. Nelemans | A. Neunzert | T. Nguyen | S. Nissanke | A. Nitz | F. Nocera | L. Nuttall | J. Oberling | G. Ogin | J. Oh | F. Ohme | P. Oppermann | R. Oram | H. Overmier | B. Owen | A. Pai | S. Pai | J. Palamos | O. Palashov | C. Palomba | C. Pankow | F. Pannarale | B. Pant | F. Paoletti | A. Paoli | W. Parker | D. Pascucci | A. Pasqualetti | R. Passaquieti | D. Passuello | M. Pedraza | A. Pele | S. Penn | A. Perreca | O. Piccinni | M. Pichot | F. Piergiovanni | V. Pierro | G. Pillant | L. Pinard | I. Pinto | M. Pitkin | R. Poggiani | J. Powell | T. Prestegard | M. Principe | M. Punturo | P. Puppo | H. Qi | V. Quetschke | R. Quitzow-James | F. Raab | H. Radkins | P. Raffai | S. Raja | M. Rakhmanov | P. Rapagnani | V. Raymond | M. Razzano | J. Read | T. Regimbau | L. Rei | S. Reid | D. Reitze | F. Ricci | K. Riles | N. Robertson | F. Robinet | A. Rocchi | L. Rolland | J. Rollins | V. Roma | R. Romano | J. Romie | S. Rowan | P. Ruggi | S. Sachdev | T. Sadecki | M. Saleem | A. Samajdar | E. Sanchez | J. Sanders | B. Sassolas | O. Sauter | R. Savage | P. Schale | P. Schmidt | R. Schnabel | R. Schofield | E. Schreiber | B. Schutz | J. Scott | S. Scott | D. Sellers | D. Sentenac | V. Sequino | A. Sergeev | Y. Setyawati | M. Shahriar | P. Shawhan | D. Shoemaker | D. Shoemaker | D. Sigg | L. Singer | A. Sintes | J. Smith | R. Smith | E. Son | B. Sorazu | F. Sorrentino | T. Souradeep | A. Srivastava | M. Steinke | J. Steinlechner | D. Steinmeyer | G. Stratta | R. Sturani | T. Summerscales | L. Sun | P. Sutton | B. Swinkels | M. Tacca | D. Tanner | R. Taylor | M. Thirugnanasambandam | M. Thomas | P. Thomas | K. Thorne | E. Thrane | V. Tiwari | M. Tonelli | F. Travasso | G. Traylor | M. Tringali | M. Tse | M. Turconi | D. Ugolini | C. Unnikrishnan | A. Urban | H. Vahlbruch | G. Vajente | G. Valdes | N. Bakel | M. Beuzekom | J. Brand | L. Schaaf | J. Heijningen | M. Vardaro | S. Vass | E. Huerta | J. Antelis | Z. Etienne | M. Fishbach | D. George | E. Katsavounidis | S. Rosofsky | E. Seidel | Y. Zlochower | Zoheyr Doctor | D. Holz | H. Chen | R. Abbott | T. Abbott | S. Abraham | F. Acernese | K. Ackley | C. Adams | R. Adhikari | V. Adya | C. Affeldt | M. Agathos | K. Agatsuma | N. Aggarwal | O. Aguiar | L. Aiello | A. Ain | P. Ajith | A. Allocca | P. Altin | A. Amato | A. Ananyeva | W. Anderson | S. Angelova | S. Appert | M. Araya | J. Areeda | M. Arène | S. Ascenzi | G. Ashton | S. Aston | P. Astone | F. Aubin | P. Aufmuth | K. AultONeal | C. Austin | V. Avendano | F. Badaracco | M. Bader | S. Bae | G. Ballardin | S. Ballmer | S. Banagiri | J. Barayoga | B. Barish | D. Barker | S. Barnum | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | D. Barta | J. Bartlett | I. Bartos | R. Bassiri | A. Basti | M. Bawaj | J. Bayley | M. Bazzan | M. Bejger | D. Beniwal | G. Bergmann | S. Bernuzzi | C. Berry | D. Bersanetti | A. Bertolini | J. Betzwieser | R. Bhandare | J. Bidler | I. Bilenko | G. Billingsley | R. Birney | O. Birnholtz | S. Biscans | S. Biscoveanu | A. Bisht | M. Bitossi | J. Blackburn | C. Blair | D. Blair | R. Blair | N. Bode | M. Boer | Y. Boetzel | G. Bogaert | F. Bondu | E. Bonilla | R. Bonnand | P. Booker | R. Bork | V. Boschi | V. Bossilkov | Y. Bouffanais | A. Bozzi | C. Bradaschia | P. Brady | A. Bramley | M. Branchesi | J. Brau | T. Briant | J. Briggs | F. Brighenti | A. Brillet | M. Brinkmann | P. Brockill | A. Brooks | D. Brown | S. Brunett | A. Buikema | T. Bulik | H. Bulten | A. Buonanno | D. Buskulic | R. Byer | M. Cabero | L. Cadonati | G. Cagnoli | C. Cahillane | J. Bustillo | T. Callister | E. Calloni | J. Camp | K. Cannon | H. Cao | J. Cao | F. Carbognani | M. Carney | Gregorio Carullo | J. Diaz | C. Casentini | S. Caudill | M. Cavaglià | R. Cavalieri | G. Cella | E. Cesarini | K. Chakravarti | S. Chao | P. Charlton | E. Chase | É. Chassande-Mottin | M. Chaturvedi | K. Chatziioannou | X. Chen | Y. Chen | H.-P. Cheng | C. Cheong | H. Chia | A. Chincarini | A. Chiummo | G. Cho | H. Cho | M. Cho | N. Christensen | Q. Chu | S. Chua | K. Chung | S. Chung | G. Ciani | A. Ciobanu | R. Ciolfi | F. Cipriano | A. Cirone | F. Clara | J. Clark | P. Clearwater | F. Cleva | P. Cohadon | M. Colleoni | C. Collette | C. Collins | M. Constancio | L. Conti | S. Cooper | P. Corban | T. Corbitt | K. R. Corley | N. Cornish | A. Corsi | S. Cortese | C. Costa | R. Cotesta | M. Coughlin | S. Coughlin | J. Coulon | S. Countryman | D. Coward | M. Cowart | D. Coyne | R. Coyne | J. Creighton | T. Creighton | M. Croquette | S. Crowder | T. Cullen | A. Cumming | L. Cunningham | E. Cuoco | T. Canton | S. Danilishin | S. D’Antonio | K. Danzmann | L. Datrier | V. Dattilo | I. Dave | D. Davis | E. Daw | D. DeBra | M. Deenadayalan | J. Degallaix | M. D. Laurentis | W. D. Pozzo | L. DeMarchi | N. Demos | T. Dent | R. Pietri | R. Rosa | C. D. Rossi | R. DeSalvo | O. D. Varona | S. Dhurandhar | T. Dietrich | L. Fiore | M. Giovanni | T. D. Girolamo | A. Lieto | B. Ding | S. D. Pace | I. Palma | F. Renzo | A. Dmitriev | F. Donovan | K. Dooley | S. Doravari | I. Dorrington | T. Downes | M. Drago | J. Driggers | Z. Du | P. Dupej | S. Dwyer | P. Easter | T. Edo | A. Effler | J. Eichholz | S. Eikenberry | M. Eisenmann | R. Eisenstein | D. Estevez | T. Etzel | M. Evans | T. Evans | V. Fafone | H. Fair | X. Fan | S. Farinon | B. Farr | W. Farr | E. Fauchon-Jones | Marc Favata | M. Fays | M. Fazio | J. Feicht | Á. Fernández-Galiana | I. Ferrante | T. A. Ferreira | F. Fidecaro | I. Fiori | D. Fiorucci | R. Fisher | J. Fishner | M. Fitz-Axen | R. Flaminio | E. Flynn | H. Fong | J. Font | P. Forsyth | J. Fournier | S. Frasca | F. Frasconi | Z. Frei | A. Freise | R. Frey | P. Fritschel | V. Frolov | P. Fulda | M. Fyffe | H. Gabbard | B. Gadre | S. Gaebel | S. Gaonkar | F. Garufi | B. Gateley | S. Gaudio | V. Gayathri | G. Gemme | A. Gennai | J. George | L. Gergely | S. Ghonge | Abhirup Ghosh | A. Ghosh | S. Ghosh | B. Giacomazzo | J. Giaime | K. Giardina | K. Gill | P. Godwin | E. Goetz | R. Goetz | B. Goncharov | A. Gopakumar | S. Gossan | M. Gosselin | R. Gouaty | A. Grado | M. Granata | A. Grant | S. Gras | P. Grassia | C. Gray | R. Gray | G. Greco | A. Green | R. Green | E. Gretarsson | H. Grote | S. Grunewald | G. Guidi | H. Gulati | Y. Guo | E. Gustafson | R. Gustafson | L. Haegel | O. Halim | E. Hall | E. Hamilton | G. Hammond | M. Haney | M. Hanke | J. Hanks | C. Hanna | O. Hannuksela | J. Hanson | T. Hardwick | K. Haris | J. Harms | G. Harry | I. Harry | C. Haster | K. Haughian | F. Hayes | J. Healy | A. Heidmann | M. Heintze | H. Heitmann | G. Hemming | M. Hendry | I. Heng | F. Vivanco | M. Heurs | S. Hild | S. Hochheim | A. M. Holgado | N. Holland | K. Holt | P. Hopkins | C. Horst | J. Hough | E. Howell | C. Hoy | B. Hughey | S. Husa | S. Huttner | T. Huynh--Dinh | B. Idzkowski | A. Iess | C. Ingram | G. Intini | M. Isi | B. Iyer | T. Jacqmin | S. Jadhav | K. Jani | N. N. Janthalur | P. Jaranowski | A. Jenkins | J. Jiang | A. Jones | D. Jones | R. Jones | R. Jonker | L. Ju | J. Junker | C. Kalaghatgi | V. Kalogera | B. Kamai | S. Kandhasamy | G. Kang | J. Kanner | S. Kapadia | S. Karki | R. Kashyap | M. Kasprzack | S. Katsanevas | W. Katzman | K. Kawabe | I. Khan | M. Khursheed | J. Kim | W. Kim | C. Kimball | M. Kinley-Hanlon | R. Kirchhoff | T. Knowles | P. Koch | G. Koekoek | N. Koper | N. Krishnendu | A. Kumar | S. Kwang | T. Lam | B. Lane | R. Lang | R. Lanza | M. Laxen | Y. Lecoeuche | H. W. Lee | J. Lee | J. Lehmann | J. Li | K. Li | X. Li | F. Linde | S. Linker | J. Liu | X. Liu | R. K. Lo | L. London | A. Longo | C. Lousto | G. Lovelace | H. Luck | D. Lumaca | R. Macas | A. Macquet | I. M. Hernandez | A. Malik | C. Markakis | A. Markowitz | A. Marquina | S. Marsat | E. Massera | S. Mastrogiovanni | A. Matas | L. McCuller | D. McManus | T. Mcrae | M. Mehmet | A. Mehta | L. Mereni | E. Merilh | R. Metzdorff | C. Michel | L. Milano | A. Miller | J. Mills | M. Milovich-Goff | O. Minazzoli | A. Mishkin | T. Mistry | G. Mo | K. Mogushi | S. Morisaki | N. Mukund | E. Muniz | J. Neilson | T. Nelson | M. Nery | K. Ng | S. Ng | P. Nguyen | C. North | B. O'Brien | H. Ohta | M. A. Okada | B. O'reilly | R. Ormiston | L. F. Ortega | R. O’Shaughnessy | S. Ossokine | D. Ottaway | A. Pace | G. Pagano | M. Page | B. Patricelli | C. Perez | H. Pfeiffer | K. S. Phukon | M. Pirello | D. T. Pong | S. Ponrathnam | P. Popolizio | A. K. Prajapati | K. Prasai | R. Prasanna | G. Pratten | L. Prokhorov | M. Purrer | P. J. Quinonez | C. Rajan | B. Rajbhandari | K. Ramirez | A. Ramos-Buades | J. Rana | K. Rao | C. J. Richardson | J. Richardson | M. Rizzo | M. Romanelli | C. Romel | K. Rose | M. Ross | K. Ryan | M. Sakellariadou | L. Salconi | L. Sanchez | N. Sanchis-Gual | K. Santiago | N. Sarin | M. Scheel | J. Scheuer | A. Schonbeck | B. Schulte | A. Sengupta | N. Sennett | T. Shaffer | P. Sharma | H. Shen | R. Shink | S. Shyamsundar | M. Sieniawska | N. Singh | A. Singhal | V. Skliris | B. Slagmolen | T. Slaven-Blair | S. Somala | E. Sowell | A. Spencer | V. Srivastava | K. Staats | C. Stachie | D. Steer | S. Stevenson | D. Stops | K. Strain | A. Strunk | V. Sudhir | S. Sunil | A. Sur | J. Suresh | S. Tait | C. Talbot | J. Tasson | S. R. Thondapu | S. Tiwari | S. Tiwari | K. Toland | Z. Tornasi | D. Toyra | A. Trovato | R. Trudeau | K. W. Tsang | R. Tso | L. Tsukada | D. Tsuna | K. Ueno | D. Vander-Hyde | V. Varma | A. Vecchio | G. Vedovato | J. Veitch | P. Veitch | K. Venkateswara | Gautam Venugopalan | D. Verkindt | F. Vetrano | A. Viets | J. Vinet | S. Vitale | T. Vo | H. Vocca | C. Vorvick | S. Vyatchanin | L. Wade | M. Wade | R. Walet | M. Walker | L. Wallace | S. Walsh | J. Wang | W. H. Wang | Y. Wang | R. Ward | J. Warner | M. Was | J. Watchi | B. Weaver | M. Weinert | A. Weinstein | R. Weiss | F. Wellmann | J. Westhouse | K. Wette | B. Whiting | C. Whittle | D. Wilken | D. Williams | A. Williamson | J. Willis | B. Willke | M. Wimmer | W. Winkler | C. Wipf | G. Woan | J. Woehler | J. Wofford | J. Wright | D. Wu | D. Wysocki | L. Xiao | H. Yamamoto | L. Yang | M. Yap | D. W. Yeeles | Hang Yu | Haocun Yu | S. Yuen | M. Zanolin | T. Zelenova | J. Zendri | M. Zevin | J. Zhang | L. Zhang | T. Zhang | C. Zhao | M. Zhou | Z. Zhou | X. Zhu | A. Zimmerman | M. Zucker | J. Zweizig | T. Carver | D. Tao | O. Salafia | S. M'arka | G. Allen | S. Antier | N. Arnaud | K. Arun | B. B'ecsy | I. Belahcene | B. Berger | M. Bizouard | J. Blackman | S. Bose | M. J. B. Rosell | M. Canepa | F. Cavalier | P. Cerd'a-Dur'an | D. Chatterjee | E. Coccia | D. Cohen | I. Cordero-Carri'on | G. D'alya | Beatrice D'Angelo | M. Davier | S. Del'eglise | M. D'iaz | J. Ducoin | R. Essick | F. Feng | V. Frey | C. Garc'ia-Quir'os | G. Gonz'alez | P. Gruning | M. Hannam | P. Hello | Y. Huang | N. Johnson-McDaniel | F. K'ef'elian | A. Kr'olak | A. Lartaux-Vollard | Z. M'arka | A. Nagar | A. Perego | G. Riemenschneider | D. Rosi'nska | B. Sathyaprakash | A. Stuver | A. Torres-Forn'e | M. Vas'uth | A. Vicer'e | L. Wen | J. Whelan | L. White | A. Zadro.zny | G. Davies | T. Denker | S. Mukherjee | J. O'Dell | C. Torrie | A. Dasgupta | W. Kastaun | C. Kramer | H. Pan | K. Arai | S. Steinlechner | E. Placidi | A. Adams | S. Akcay | S. Anand | S. Anderson | S. Ansoldi | S. M. Aronson | Y. Asali | A. Baer | S. Bagnasco | J. Baird | M. Ball | A. Bals | A. Balsamo | D. Bankar | R. S. Bankar | C. Barbieri | P. Barneo | B. Becher | V. Bedakihale | M. Benjamin | T. F. Bennett | J. Bentley | F. Bergamin | A. Bhandari | D. Bhattacharjee | M. Bischi | O. Blanch | F. Bobba | M. Boldrini | V. Boudart | M. Breschi | J. Brooks | G. Bruno | R. Bruntz | R. Buscicchio | M. Caesar | J. Callaghan | G. Carapella | M. Carpinelli | W. Chaibi | C.-L. Chan | C. Chan | K. Chandra | P. Chanial | D. Chattopadhyay | A. Chen | F. Chiadini | R. Chierici | S. Choate | P. Ciecielag | M. Cie'slar | M. Cifaldi | E. Clark | L. Clarke | S. Clesse | M. Colpi | S. Corezzi | D. Corre | B. Cousins | J. Cudell | R. Cummings | M. Curylo | A. Dana | L. M. DaneshgaranBajastani | B. Danila | C. Darsow-Fromm | R. Dean | V. D. Favero | F. Lillo | N. D. Lillo | F. Matteis | V. D’Emilio | A. Depasse | M. Diaz-Ortiz | N. Didio | C. DiFronzo | C. Giorgio | F. D. Giovanni | A. K. Divakarla | L. D’Onofrio | O. Durante | D. D'urso | P. Duverne | G. Eddolls | B. Edelman | O. Edy | A. Ejlli | L. Errico | H. Estell'es | B. Ewing | A. M. Farah | E. Fenyvesi | D. Ferguson | P. Figura | R. Fittipaldi | V. Fiumara | E. Floden | G. G. Fronz'e | J. Gais | S. Galaudage | R. Gamba | D. Ganapathy | A. Ganguly | B. Garaventa | R. George | L. Giacoppo | D. Gibson | C. Gier | P. Giri | J. Glanzer | A. Gleckl | N. Gohlke | B. Grace | V. Granata | H. L. Griggs | G. Grignani | A. Grimaldi | E. Grimes | S. Grimm | J. G. Guerrero | A. R. Guimaraes | G. Guix'e | Anchal Gupta | Anuradha Gupta | P. Gupta | F. Guzmán | H. Hansen | T. Hansen | T. Harder | D. Hartwig | R. Hasskew | J. Heinze | J. Heinzel | F. Hellman | A. Helmling-Cornell | E. Hennes | J. Hennig | M. Hennig | P. Hill | A. Hines | E. Hofgard | J. Hohmann | I. J. Hollows | Z. J. Holmes | D. Hoyland | M. Hubner | A. Huddart | V. Hui | B. Hutzler | R. Huxford | S. Imperato | H. Inchauspe | V. JaberianHamedan | S. Jadhav | K. Janssens | D. Jariwala | R. Jaume | M. Jeunon | G. Johns | J. Jones | P. Jones | D. Kapasi | C. Karathanasis | S. Khadka | N. Khetan | G. Kim | E. Knyazev | M. Kolstein | K. Komori | M. Kovalam | Rahul Kumar | Rakesh Kumar | K. Kuns | D. Laghi | E. Lalande | A. Lamberts | I. L. Rosa | E. Leon | A. Li | J. Linley | M. Llorens-Monteagudo | A. Lockwood | I. MacMillan | C. Magazzù | S. Maliakal | M. Mapelli | M. Martinez | V. Martinez | H. Masalehdan | M. Mateu-Lucena | M. Matiushechkina | E. Maynard | C. McIsaac | D. Melchor | A. Menéndez-Vázquez | K. Merfeld | J. D. Merritt | F. Meylahn | A. Mhaske | A. Miani | I. Michaloliakos | S. Mohite | I. Molina | M. Molina-Ruiz | M. Mondin | F. Morawski | S. Mozzon | F. Muciaccia | S. Nadji | B. Neil | C. Nguyen | S. Nichols | M. Noh | D. Nothard | G. Oganesyan | C. Olivetto | C. Osthelder | G. Pagliaroli | T. Pang | A. Paolone | M. Patel | E. Payne | T. Pechsiri | M. Pegoraro | C. P'erigois | S. Perries | J. Petermann | D. Petterson | K. A. Pham | M. Piendibene | L. Pierini | F. Pilo | K. Piotrzkowski | W. Plastino | C. Pluchar | E. Polini | A. Poverman | M. Pracchia | P. Prosposito | L. Prudenzi | A. Puecher | F. Puosi | G. Raaijmakers | N. Radulesco | H. Rafferty | S. Rail | T. Ramirez | U. Rapol | B. Ratto | P. Rettegno | L. Richardson | J. Rocha | S. Rodriguez | R. D. Rodriguez-Soto | A. Romero | I. Romero-Shaw | S. Ronchini | C. A. Rose | D. Rose | S. Rowlinson | S. Roy | J. Sadiq | J. Sánchez | L. Sandles | E. Santos | T. Saravanan | V. Savant | D. Sawant | S. Sayah | D. Schaetzl | A. Schindler-Tyka | O. Schwarm | E. Schwartz | M. Seglar-Arroyo | S. Sharifi | A. Sharma | M. Shikauchi | K. Shukla | D. Singh | A. Singha | V. Sipala | J. Smetana | K. Soni | S. Soni | V. Sordini | N. Sorrentino | R. Soulard | M. Spera | J. Steinhoff | G. Stolle-mcallister | M. Stover | J. Sudbeck | S. Sudhagar | H. Suh | H. Sun | A. Tanasijczuk | A. Tapia | E. Martin | R. Tenorio | L. Terkowski | L. Thomas | J. Thompson | A. Tolley | I. T. E. Melo | A. Tran | A. Trapananti | A. Tripathee | D. Tsai | T. Tsutsui | A. S. Ubhi | R. Udall | A. Utina | A. Vajpeyi | M. Valentini | V. Valsan | A. Vargas | J. Venneberg | Y. Verma | D. Veske | A. Vijaykumar | V. Villa-Ortega | G. Wallace | S. Wang | N. Y. Washington | L. Wei | D. White | D. Wilson | I. C. F. Wong | J. Wrangel | Y. Yang | Z. Yang | A. Yoon | R. Zhang | G. Zhao | Y. Zheng

[1]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[2]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[3]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[4]  J. R. Palamos,et al.  Sensitivity and performance of the Advanced LIGO detectors in the third observing run , 2020, Physical Review D.

[5]  P. Lasky,et al.  Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.

[6]  S. Fairhurst,et al.  Two-harmonic approximation for gravitational waveforms from precessing binaries , 2019, Physical Review D.

[7]  D. Davis,et al.  Utilizing aLIGO glitch classifications to validate gravitational-wave candidates , 2020, Classical and Quantum Gravity.

[8]  Duncan A. Brown,et al.  DQSEGDB: A time-interval database for storing gravitational wave observatory metadata , 2020, SoftwareX.

[9]  Cody Messick,et al.  A self-consistent method to estimate the rate of compact binary coalescences with a Poisson mixture model , 2019, Classical and Quantum Gravity.

[10]  E. Berger,et al.  Does GW190425 Require an Alternative Formation Pathway than a Fast-merging Channel? , 2020, The Astrophysical Journal.

[11]  Dimensional regularization of the gravitational interaction of point masses , 2001, gr-qc/0105038.

[12]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .

[13]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[14]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[15]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[16]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[17]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[18]  B. Mours,et al.  Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era , 2015, 1512.02864.

[19]  F. Pannarale,et al.  Modeling the gravitational wave signature of neutron star black hole coalescences , 2020, Physical Review D.

[20]  Alexander H. Nitz,et al.  Detecting Binary Compact-object Mergers with Gravitational Waves: Understanding and Improving the Sensitivity of the PyCBC Search , 2017, 1705.01513.

[21]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[22]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[23]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[24]  The Ligo Scientific Collaboration,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.

[25]  Vivien Raymond,et al.  PESummary: The code agnostic Parameter Estimation Summary page builder , 2020, SoftwareX.

[26]  John T. Whelan,et al.  Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data , 2013, 1310.5633.

[27]  T. Littenberg,et al.  Noise spectral estimation methods and their impact on gravitational wave measurement of compact binary mergers , 2019, Physical Review D.

[28]  G. Ashton,et al.  Massively parallel Bayesian inference for transient gravitational-wave astronomy , 2020, Monthly Notices of the Royal Astronomical Society.

[29]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[30]  J. K. Blackburn,et al.  Tests of General Relativity with GW170817. , 2018, Physical review letters.

[31]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[32]  Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms , 2009 .

[33]  K. G. Arun,et al.  Ready-to-use post-Newtonian gravitational waveforms for binary black holes with nonprecessing spins: An update , 2016, 1601.05588.

[34]  Andrea Taracchini,et al.  Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity , 2016, 1607.05661.

[35]  E. Thrane,et al.  The Mass Distribution of Galactic Double Neutron Stars , 2019, The Astrophysical Journal.

[36]  Andrea Taracchini,et al.  Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics , 2018, Physical Review D.

[37]  P. Ajith,et al.  Effects of nonquadrupole modes in the detection and parameter estimation of black hole binaries with nonprecessing spins , 2016, 1612.05608.

[38]  M. Pürrer,et al.  Gravitational waveform accuracy requirements for future ground-based detectors , 2019, Physical Review Research.

[39]  K. Chatziioannou,et al.  Inferring the maximum and minimum mass of merging neutron stars with gravitational waves , 2020, Physical Review D.

[40]  S. Roy,et al.  Effectual template banks for upcoming compact binary searches in Advanced-LIGO and Virgo data , 2019, Physical Review D.

[41]  P. B. Covas,et al.  Characterization of systematic error in Advanced LIGO calibration , 2020, Classical and Quantum Gravity.

[42]  T. Littenberg,et al.  Systematic biases in parameter estimation of binary black-hole mergers , 2012, 1210.0893.

[43]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1999 .

[44]  R. Magee,et al.  The GstLAL template bank for spinning compact binary mergers in the second observation run of Advanced LIGO and Virgo , 2018, 1812.05121.

[45]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[46]  Yi Pan,et al.  Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.

[47]  C. Pankow,et al.  Localization of Compact Binary Sources with Second-generation Gravitational-wave Interferometer Networks , 2019, The Astrophysical Journal.

[48]  R. Magee,et al.  Sub-threshold Binary Neutron Star Search in Advanced LIGO’s First Observing Run , 2019, The Astrophysical Journal.

[49]  F. Marion,et al.  The MBTA pipeline for detecting compact binary coalescences in the third LIGO–Virgo observing run , 2020, Classical and Quantum Gravity.

[50]  B. S. Sathyaprakash,et al.  Stochastic template placement algorithm for gravitational wave data analysis , 2009, 0908.2090.

[51]  E. Thrane,et al.  On the origin of GW190425 , 2020, 2001.06492.

[52]  F. Pannarale,et al.  Bayesian inference analysis of unmodelled gravitational-wave transients , 2018, Classical and Quantum Gravity.

[53]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[54]  Luciano Rezzolla,et al.  THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS , 2016, 1605.01938.

[55]  Nelson Christensen,et al.  Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis , 1998 .

[56]  L. Naticchioni The payloads of Advanced Virgo: current status and upgrades , 2018 .

[57]  Milwaukee,et al.  Efficient asymptotic frame selection for binary black hole spacetimes using asymptotic radiation , 2011, 1109.5224.

[58]  Scott E. Field,et al.  Constraining the parameters of GW150914 and GW170104 with numerical relativity surrogates , 2018, Physical Review D.

[59]  Iris de Ruiter,et al.  Incorporation of Statistical Data Quality Information into the GstLAL Search Analysis , 2020, 2010.15282.

[60]  T. Damour,et al.  Relativistic tidal properties of neutron stars , 2009, 0906.0096.

[61]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[62]  K. Cannon,et al.  Likelihood-Ratio Ranking Statistic for Compact Binary Coalescence Candidates with Rate Estimation , 2015, 1504.04632.

[63]  P. K. Panda,et al.  GW190412: Observation of a binary-black-hole coalescence with asymmetric masses , 2020 .

[64]  A. Sintes,et al.  Impact of gravitational radiation higher order modes on single aligned-spin gravitational wave searches for binary black holes , 2015, 1511.02060.

[65]  J. R. Palamos,et al.  Reducing scattered light in LIGO’s third observing run , 2020, Classical and Quantum Gravity.

[66]  T. Littenberg,et al.  Reconstructing gravitational wave signals from binary black hole mergers with minimal assumptions , 2020, 2003.09456.

[67]  Cody Messick,et al.  The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO's Second and Advanced Virgo's First Observing Runs , 2019, 1901.08580.

[68]  S. Fairhurst,et al.  Measuring gravitational-wave higher-order multipoles , 2020, Physical Review D.

[69]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[70]  J. K. Blackburn,et al.  A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo , 2019, The Astrophysical Journal.

[71]  T. Littenberg,et al.  BayesWave analysis pipeline in the era of gravitational wave observations , 2020, Physical Review D.

[72]  M. S. Shahriar,et al.  Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run , 2019 .

[73]  Jonah Kanner,et al.  Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817 , 2018, Physical Review D.

[74]  J. R. Palamos,et al.  Environmental noise in advanced LIGO detectors , 2021, Classical and Quantum Gravity.

[75]  Duncan A. Brown,et al.  Reconstructing the calibrated strain signal in the Advanced LIGO detectors , 2017, 1710.09973.

[76]  B. Zackay,et al.  Detecting gravitational waves with disparate detector responses: Two new binary black hole mergers , 2019, Physical Review D.

[77]  N. Leroy,et al.  On the background estimation by time slides in a network of gravitational wave detectors , 2009, 0906.2120.

[78]  W. Marsden I and J , 2012 .

[79]  P. K. Panda,et al.  Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs , 2019, The Astrophysical Journal.

[80]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[81]  S. Roy,et al.  Effectual template banks for upcoming compact binary searches in Advanced-LIGO and Virgo data , 2017, Physical Review D.

[82]  A. Lundgren,et al.  2-OGC: Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO and Virgo Data , 2019, The Astrophysical Journal.

[83]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[84]  Gainesville,et al.  Constraint Likelihood analysis for a network of gravitational wave detectors , 2005 .

[85]  Yi Pan,et al.  Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism , 2013, 1307.6232.

[86]  Self-interaction spin effects in inspiralling compact binaries , 2005, astro-ph/0504538.

[87]  Y. Wang,et al.  Effects of waveform model systematics on the interpretation of GW150914 , 2017 .

[88]  K. Covey,et al.  A noninteracting low-mass black hole–giant star binary system , 2018, Science.

[89]  Y. Wang,et al.  Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 , 2016, 1602.03845.

[90]  Robin Kirschbaum,et al.  Questions and answers , 2009, Diabetes, obesity & metabolism.

[91]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[92]  A. Krolak,et al.  Coalescing binaries—Probe of the universe , 1987 .

[93]  Gravitational waves from inspiraling compact binaries: The quadrupole-moment term , 1997, gr-qc/9709032.

[94]  J. R. Palamos,et al.  LIGO detector characterization in the second and third observing runs , 2021, Classical and Quantum Gravity.

[95]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[96]  R. Schnabel,et al.  First long-term application of squeezed states of light in a gravitational-wave observatory. , 2013, Physical review letters.

[97]  C. Berry,et al.  You Can’t Always Get What You Want: The Impact of Prior Assumptions on Interpreting GW190412 , 2020, The Astrophysical Journal.

[98]  P. K. Panda,et al.  Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo , 2019, 1912.11716.

[99]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[100]  Gainesville,et al.  The Advanced LIGO photon calibrators. , 2016, The Review of scientific instruments.

[101]  E. Majorana,et al.  The Advanced Virgo monolithic fused silica suspension , 2016 .

[102]  Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses , 2005, gr-qc/0503044.

[103]  Eugenio Coccia,et al.  Thermal effects and their compensation in Advanced Virgo , 2012 .

[104]  B. Zackay,et al.  Highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run , 2019, Physical Review D.

[105]  A. Katsaggelos,et al.  Discovering features in gravitational-wave data through detector characterization, citizen science and machine learning , 2021, 2103.12104.

[106]  C. Broeck,et al.  Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era , 2011, 1111.3044.

[107]  M Hannam,et al.  Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.

[108]  Y. Arai,et al.  KAGRA: 2.5 generation interferometric gravitational wave detector , 2018, Nature Astronomy.

[109]  Matthew West,et al.  The PyCBC search for gravitational waves from compact binary coalescence , 2015, 1508.02357.

[110]  L. Gualtieri,et al.  Tidal deformations of a spinning compact object , 2015, 1503.07365.

[111]  B. A. Boom,et al.  A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals , 2019, Classical and Quantum Gravity.

[112]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[113]  J. Gair,et al.  Counting and confusion: Bayesian rate estimation with multiple populations , 2013, 1302.5341.

[114]  N. Yunes,et al.  Approximate Universal Relations for Neutron Stars and Quark Stars , 2016, 1608.02582.

[115]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[116]  K. Cannon,et al.  A method to estimate the significance of coincident gravitational-wave observations from compact binary coalescence , 2012, 1209.0718.

[117]  Machine-learning non-stationary noise out of gravitational wave detectors , 2019, Physical Review D.

[118]  Santiago de Compostela,et al.  Dynamic normalization for compact binary coalescence searches in non-stationary noise , 2020, Classical and Quantum Gravity.

[119]  Y. Wang,et al.  GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..

[120]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[121]  Scott E. Field,et al.  Impact of subdominant modes on the interpretation of gravitational-wave signals from heavy binary black hole systems , 2019, Physical Review D.

[122]  Michael Boyle,et al.  Parameter Estimation Method that Directly Compares Gravitational Wave Observations to Numerical Relativity , 2017, 1705.09833.

[123]  N. Leroy,et al.  Omicron: A tool to characterize transient noise in gravitational-wave detectors , 2020, SoftwareX.

[124]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[125]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017 .

[126]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[127]  Frank Ohme,et al.  First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries. , 2017, Physical review letters.

[128]  Michael Purrer,et al.  The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity , 2016, 1612.09566.

[129]  T. Damour,et al.  Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger. , 2014, Physical review letters.

[130]  K. Chatziioannou,et al.  Constructing gravitational waves from generic spin-precessing compact binary inspirals , 2017, 1703.03967.

[131]  W. Farr,et al.  Black holes in the low-mass gap: Implications for gravitational-wave observations , 2019, Physical Review D.

[132]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.

[133]  M. J. Williams,et al.  Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue , 2020, Monthly Notices of the Royal Astronomical Society.

[134]  M. J. Williams,et al.  Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog , 2020, 2010.14533.

[135]  F. Ohme,et al.  Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter , 2014, 1408.1810.

[136]  G. Mendell,et al.  Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations , 2016, 1608.05134.

[137]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[138]  Vetoes for inspiral triggers in LIGO data , 2004, gr-qc/0403114.

[139]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[140]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[141]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[142]  A. Schimmel,et al.  Vertical and Horizontal Seismic Isolation Performance of the Advanced Virgo External Injection Bench Seismic Attenuation System , 2015 .

[143]  Michael Purrer,et al.  Surrogate model for an aligned-spin effective-one-body waveform model of binary neutron star inspirals using Gaussian process regression , 2018, Physical Review D.

[144]  P. Schmidt,et al.  Measuring precession in asymmetric compact binaries , 2020 .

[145]  R. Magee,et al.  Fast evaluation of multidetector consistency for real-time gravitational wave searches , 2019, Physical Review D.

[146]  G. Ciani,et al.  Brownian force noise from molecular collisions and the sensitivity of advanced gravitational wave observatories , 2011, 1108.3254.

[147]  A. Samajdar,et al.  Improving the NRTidal model for binary neutron star systems , 2019, Physical Review D.

[148]  P. K. Panda,et al.  GW190814: Gravitational Waves from the Coalescence of a 23 M$_\odot$ Black Hole with a 2.6 M$_\odot$ Compact Object , 2020, 2006.12611.

[149]  C. Pankow,et al.  Novel scheme for rapid parallel parameter estimation of gravitational waves from compact binary coalescences , 2015, 1502.04370.

[150]  Y. Wang,et al.  The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914 , 2016 .

[151]  Lawrence E. Kidder,et al.  Multipolar effective-one-body waveforms for precessing binary black holes: Construction and validation , 2020, Physical Review D.

[152]  V. Cardoso,et al.  Equation-of-state-independent relations in neutron stars , 2013, 1304.2052.

[153]  Lawrence E. Kidder,et al.  Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach. , 2016, Physical review letters.

[154]  E. Porter,et al.  Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order , 2015, 1501.01529.

[155]  T. Dent,et al.  Optimizing gravitational-wave searches for a population of coalescing binaries: Intrinsic parameters , 2013, 1311.7174.

[156]  B. Zackay,et al.  New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo , 2019, Physical Review D.

[157]  Michael Purrer,et al.  Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy , 2016, 1611.00332.

[158]  C. Kim,et al.  Parameter estimation of gravitational waves from precessing black hole-neutron star inspirals with higher harmonics , 2014, 1403.0544.

[159]  A. Chiavassa,et al.  The Mass Function of GX 339–4 from Spectroscopic Observations of Its Donor Star , 2017, 1708.04667.

[160]  D. Champion,et al.  Formation of Double Neutron Star Systems , 2017, 1706.09438.

[161]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[162]  S. Fairhurst,et al.  Identifying when precession can be measured in gravitational waveforms , 2020, 2010.04131.

[163]  Karsten Danzmann,et al.  Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. , 2016, Physical review letters.

[164]  Joshua R. Smith,et al.  A hierarchical method for vetoing noise transients in gravitational-wave detectors , 2011, 1107.2948.

[165]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[166]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[167]  V. Necula,et al.  Transient analysis with fast Wilson-Daubechies time-frequency transform , 2012 .

[168]  P. K. Panda,et al.  GW190521: A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}. , 2020, Physical review letters.

[169]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[170]  Tomoki Isogai,et al.  Used percentage veto for LIGO and virgo binary inspiral searches , 2010 .

[171]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[172]  David Blair,et al.  Observation of Parametric Instability in Advanced LIGO. , 2015, Physical review letters.

[173]  P. J. King,et al.  Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO , 2018, Physical Review D.

[174]  G. Mitselmakher,et al.  A coherent method for detection of gravitational wave bursts , 2004 .

[175]  R. Cotesta,et al.  Frequency-domain reduced-order model of aligned-spin effective-one-body waveforms with higher-order modes , 2020, 2003.12079.

[176]  J. R. Palamos,et al.  Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. , 2019, Physical review letters.

[177]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[178]  S. Fairhurst,et al.  When will we observe binary black holes precessing? , 2019, Physical Review D.

[179]  B. A. Boom,et al.  Calibration of advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2 , 2018, Classical and Quantum Gravity.

[180]  P. B. Covas,et al.  Point absorbers in Advanced LIGO. , 2021, Applied optics.

[181]  D. Holz,et al.  Distance measures in gravitational-wave astrophysics and cosmology , 2017, 1709.08079.

[182]  G. Mitselmakher,et al.  Constraint likelihood method: generalization for colored noise. , 2006 .

[183]  Alexander H. Nitz,et al.  1-OGC: The First Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data , 2018, The Astrophysical Journal.

[184]  Agata Trovato,et al.  GWOSC: Gravitational Wave Open Science Center , 2019, Proceedings of The New Era of Multi-Messenger Astrophysics — PoS(Asterics2019).

[185]  O. Pols,et al.  The Formation of Double Neutron Star Systems , 2004 .

[186]  I. Mandel,et al.  Binary population synthesis with probabilistic remnant mass and kick prescriptions , 2020, Monthly Notices of the Royal Astronomical Society.

[187]  P. Ajith,et al.  Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.

[188]  Jon M. Miller,et al.  The Masses and Spins of Neutron Stars and Stellar-Mass Black Holes , 2014, 1408.4145.

[189]  S. Bernuzzi,et al.  Closed-form tidal approximants for binary neutron star gravitational waveforms constructed from high-resolution numerical relativity simulations , 2017, 1706.02969.

[190]  M. Blom Seismic attenuation for Advanced Virgo: Vibration isolation for the external injection bench , 2015 .

[191]  E. Ochsner,et al.  Asymptotic frame selection for binary black hole spacetimes II: Post-Newtonian limit , 2012, 1205.2287.

[192]  J. Lattimer The Nuclear Equation of State and Neutron Star Masses , 2012, 1305.3510.

[193]  A. Katsaggelos,et al.  Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science , 2016, Classical and quantum gravity.

[194]  Vincent Loriette,et al.  Noise from scattered light in Virgo's second science run data , 2010 .

[195]  Frank Ohme,et al.  Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.

[196]  Charles D. Bailyn,et al.  THE MASS DISTRIBUTION OF STELLAR BLACK HOLES , 1998 .

[197]  Thibault Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000 .

[198]  S. Fairhurst,et al.  Constraining the Inclinations of Binary Mergers from Gravitational-wave Observations , 2018, The Astrophysical Journal.

[199]  Neil J. Cornish,et al.  Bayesian inference for spectral estimation of gravitational wave detector noise , 2014, 1410.3852.

[200]  D. Keitel,et al.  Determining the final spin of a binary black hole system including in-plane spins: Method and checks of accuracy , 2016 .

[201]  R. Savage,et al.  Fiducial displacements with improved accuracy for the global network of gravitational wave detectors , 2020, Classical and Quantum Gravity.

[202]  S. Marsat,et al.  Next-to-next-to-leading order spin–orbit effects in the gravitational wave flux and orbital phasing of compact binaries , 2013, 1303.7412.

[203]  Duncan A. Brown,et al.  Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors , 2012, 1211.6184.

[204]  G. Ashton,et al.  Multiwaveform inference of gravitational waves , 2019, Physical Review D.

[205]  M. J. Williams,et al.  Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog , 2020, 2010.14529.

[206]  B. Lackey,et al.  Systematic and statistical errors in a bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors , 2014, 1402.5156.

[207]  Karsten Danzmann,et al.  Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light , 2019 .

[208]  T. Damour,et al.  Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals , 2012, 1203.4352.

[209]  D. Davis,et al.  Improving the sensitivity of Advanced LIGO using noise subtraction , 2018, Classical and Quantum Gravity.

[210]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[211]  P. Ajith,et al.  Gravitational-wave observations of binary black holes: Effect of nonquadrupole modes , 2014, 1409.2349.

[212]  Peter Fritschel,et al.  Impact of upconverted scattered light on advanced interferometric gravitational wave detectors. , 2012, Optics express.

[213]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[214]  R. Poggiani Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).

[215]  T. Canton,et al.  Designing a template bank to observe compact binary coalescences in Advanced LIGO's second observing run , 2017, 1705.01845.

[216]  J. Alsing,et al.  Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state , 2017, 1709.07889.

[217]  A. Masserot,et al.  The Advanced Virgo photon calibrators , 2020, Classical and Quantum Gravity.

[218]  B. S. Sathyaprakash,et al.  Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries , 2015, 1504.04766.

[219]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[220]  C. Broeck,et al.  Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects , 2018, Physical Review D.

[221]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[222]  E. Poisson,et al.  Relativistic theory of tidal Love numbers , 2009, 0906.1366.

[223]  Observing an intermediate-mass black hole GW190521 with minimal assumptions , 2020, 2009.11336.

[224]  A. Nitz,et al.  Extending the PyCBC search for gravitational waves from compact binary mergers to a global network , 2020, Physical Review D.

[225]  J. Kissel,et al.  Blip glitches in Advanced LIGO data , 2019, Classical and Quantum Gravity.

[226]  H. Pfeiffer,et al.  Geometric approach to the precession of compact binaries , 2011, 1110.2965.

[227]  Suppressing parametric instabilities in LIGO using low-noise acoustic mode dampers , 2019, Physical Review D.

[228]  A. Nitz,et al.  Real-time Search for Compact Binary Mergers in Advanced LIGO and Virgo's Third Observing Run Using PyCBC Live , 2020, The Astrophysical Journal.

[229]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[230]  Alexander H. Nitz,et al.  Implementing a search for aligned-spin neutron star - black hole systems with advanced ground based gravitational wave detectors , 2014, 1405.6731.

[231]  Marc Favata Systematic parameter errors in inspiraling neutron star binaries. , 2013, Physical review letters.

[232]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[233]  R. Schofield,et al.  Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.

[234]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[235]  Finn Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.

[236]  Frank Ohme,et al.  Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects , 2018, Physical Review D.

[237]  B. A. Boom,et al.  Observing gravitational-wave transient GW150914 with minimal assumptions , 2016 .

[238]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[239]  B. A. Boom,et al.  THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.

[240]  P. Schmidt,et al.  Tracking the precession of compact binaries from their gravitational-wave signal , 2010, 1012.2879.

[241]  P. Landry,et al.  Tidal deformation of a slowly rotating material body: External metric , 2015, 1503.07366.

[242]  Joshua R Smith,et al.  LigoDV-web: Providing easy, secure and universal access to a large distributed scientific data store for the LIGO scientific collaboration , 2016, Astron. Comput..

[243]  P. Schmidt,et al.  Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals , 2012, 1207.3088.

[244]  A. Taracchini,et al.  Dynamical Tides in General Relativity: Effective Action and Effective-One-Body Hamiltonian , 2016, 1608.01907.

[245]  Shaughnessy,et al.  All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run , 2019 .

[246]  B. A. Boom,et al.  Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model , 2016, 1606.01210.

[247]  D. Shoemaker,et al.  Detectability of gravitational waves from binary black holes: Impact of precession and higher modes , 2016, 1612.02340.

[248]  S. Roy,et al.  Hybrid geometric-random template-placement algorithm for gravitational wave searches from compact binary coalescences , 2017, 1702.06771.

[249]  Dimitrios Psaltis,et al.  ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS , 2012, 1201.1006.

[250]  P. Graff,et al.  PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.

[251]  Lawrence E. Kidder,et al.  Aligned-spin neutron-star–black-hole waveform model based on the effective-one-body approach and numerical-relativity simulations , 2020, Physical Review D.

[252]  T. Littenberg,et al.  Enabling high confidence detections of gravitational-wave bursts , 2015, 1511.08752.

[253]  B. C. Barish,et al.  Summary of Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1 , 2019, 1905.05565.

[254]  E. Milotti,et al.  Wider look at the gravitational-wave transients from GWTC-1 using an unmodeled reconstruction method , 2019, Physical Review D.

[255]  K. Covey,et al.  A noninteracting low-mass black hole–giant star binary system , 2019, Science.

[256]  Lisa Barsotti,et al.  Squeezed vacuum states of light for gravitational wave detectors , 2018, Reports on progress in physics. Physical Society.

[257]  V. Necula,et al.  Reconstruction of chirp mass in searches for gravitational wave transients , 2016 .

[258]  F. Ohme,et al.  Including higher order multipoles in gravitational-wave models for precessing binary black holes , 2019, Physical Review D.

[259]  K. S. Thorne,et al.  The characterization of Virgo data and its impact on gravitational-wave searches , 2012, 1203.5613.

[260]  I. Mandel,et al.  THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.

[261]  Carlos O. Lousto,et al.  Remnant of binary black-hole mergers: New simulations and peak luminosity studies , 2016, 1610.09713.

[262]  B. Zackay,et al.  New search pipeline for compact binary mergers: Results for binary black holes in the first observing run of Advanced LIGO , 2019, Physical Review D.

[263]  E. Katsavounidis,et al.  Multiresolution techniques for the detection of gravitational-wave bursts , 2004, gr-qc/0412119.

[264]  M. S. Shahriar,et al.  Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.

[265]  Brookhaven National Laboratory,et al.  Accelerating parameter inference with graphics processing units , 2019, Physical Review D.

[266]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[267]  P. Freire,et al.  H E ] 8 M ar 2 01 6 Masses , Radii , and Equation of State of Neutron Stars , 2016 .

[268]  B. S. Sathyaprakash,et al.  Searching for gravitational waves from binary coalescence , 2012, 1208.3491.

[269]  S. Klimenko,et al.  Localization of gravitational wave sources with networks of advanced detectors , 2011, 1101.5408.

[270]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[271]  The LIGO Scientific Collaboration,et al.  Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, 1602.03844.

[272]  Scott E. Field,et al.  Surrogate models for precessing binary black hole simulations with unequal masses , 2019, Physical Review Research.

[273]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[274]  Robert W. Taylor,et al.  Model comparison from LIGO-Virgo data on GW170817's binary components and consequences for the merger remnant , 2019, 1908.01012.

[275]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[276]  Y. Wang,et al.  Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run , 2017, 1710.02185.

[277]  F. Salemi,et al.  Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO , 2017, 1711.02009.

[278]  T. Littenberg,et al.  Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline , 2016, The Astrophysical journal.

[279]  J. K. Blackburn,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[280]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.