GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run
暂无分享,去创建一个
M. J. Williams | P. K. Panda | B. A. Boom | S. A. Usman | M. J. Szczepa'nczyk | P. B. Covas | A. L. James | C. Broeck | J. McCann | E. Milotti | P. Ricker | S. Klimenko | A. Mukherjee | S. Oh | M. Fejer | P. Couvares | A. Wade | S. Roy | J. Gair | S. Babak | E. Porter | G. Prodi | S. Fairhurst | D. Hofman | L. Mir | P. Wessels | G. Baltus | D. Keitel | J. Key | F. Khalili | S. Khan | E. Khazanov | N. Kijbunchoo | C. Kim | K. Kim | Y. Kim | P. King | J. Kissel | L. Kleybolte | S. Koehlenbeck | S. Koley | V. Kondrashov | A. Kontos | M. Korobko | W. Korth | D. Kozak | V. Kringel | G. Kuehn | P. Kumar | B. Lackey | M. Landry | J. Lange | B. Lantz | P. Lasky | A. Lazzarini | C. Lazzaro | P. Leaci | S. Leavey | H. Lee | K. Lee | N. Leroy | N. Letendre | Y. Levin | T. G. F. Li | T. Littenberg | M. Lorenzini | V. Loriette | M. Lormand | G. Losurdo | J. Lough | A. Lundgren | Y. Ma | M. Macinnis | D. Macleod | F. Magaña-Sandoval | R. Magee | E. Majorana | I. Maksimovic | N. Man | V. Mandic | V. Mangano | G. Mansell | M. Manske | M. Mantovani | F. Marchesoni | F. Marion | A. Markosyan | E. Maros | F. Martelli | I. Martin | R. Martin | D. Martynov | K. Mason | A. Masserot | T. Massinger | M. Masso-Reid | F. Matichard | N. Mavalvala | R. McCarthy | D. McClelland | S. McCormick | S. McGuire | J. McIver | S. McWilliams | D. Meacher | G. Meadors | A. Melatos | G. Mendell | R. Mercer | M. Merzougui | S. Meshkov | C. Messenger | C. Messick | P. Meyers | H. Miao | H. Middleton | M. Millhouse | Y. Minenkov | C. Mishra | S. Mitra | V. Mitrofanov | G. Mitselmakher | R. Mittleman | S. Mohapatra | M. Montani | C. Moore | D. Moraru | G. Moreno | B. Mours | C. Mow-Lowry | D. Mukherjee | S. Mukherjee | A. Mullavey | J. Munch | P. Murray | I. Nardecchia | L. Naticchioni | R. Nayak | G. Nelemans | A. Neunzert | T. Nguyen | S. Nissanke | A. Nitz | F. Nocera | L. Nuttall | J. Oberling | G. Ogin | J. Oh | F. Ohme | P. Oppermann | R. Oram | H. Overmier | B. Owen | A. Pai | S. Pai | J. Palamos | O. Palashov | C. Palomba | C. Pankow | F. Pannarale | B. Pant | F. Paoletti | A. Paoli | W. Parker | D. Pascucci | A. Pasqualetti | R. Passaquieti | D. Passuello | M. Pedraza | A. Pele | S. Penn | A. Perreca | O. Piccinni | M. Pichot | F. Piergiovanni | V. Pierro | G. Pillant | L. Pinard | I. Pinto | M. Pitkin | R. Poggiani | J. Powell | T. Prestegard | M. Principe | M. Punturo | P. Puppo | H. Qi | V. Quetschke | R. Quitzow-James | F. Raab | H. Radkins | P. Raffai | S. Raja | M. Rakhmanov | P. Rapagnani | V. Raymond | M. Razzano | J. Read | T. Regimbau | L. Rei | S. Reid | D. Reitze | F. Ricci | K. Riles | N. Robertson | F. Robinet | A. Rocchi | L. Rolland | J. Rollins | V. Roma | R. Romano | J. Romie | S. Rowan | P. Ruggi | S. Sachdev | T. Sadecki | M. Saleem | A. Samajdar | E. Sanchez | J. Sanders | B. Sassolas | O. Sauter | R. Savage | P. Schale | P. Schmidt | R. Schnabel | R. Schofield | E. Schreiber | B. Schutz | J. Scott | S. Scott | D. Sellers | D. Sentenac | V. Sequino | A. Sergeev | Y. Setyawati | M. Shahriar | P. Shawhan | D. Shoemaker | D. Shoemaker | D. Sigg | L. Singer | A. Sintes | J. Smith | R. Smith | E. Son | B. Sorazu | F. Sorrentino | T. Souradeep | A. Srivastava | M. Steinke | J. Steinlechner | D. Steinmeyer | G. Stratta | R. Sturani | T. Summerscales | L. Sun | P. Sutton | B. Swinkels | M. Tacca | D. Tanner | R. Taylor | M. Thirugnanasambandam | M. Thomas | P. Thomas | K. Thorne | E. Thrane | V. Tiwari | M. Tonelli | F. Travasso | G. Traylor | M. Tringali | M. Tse | M. Turconi | D. Ugolini | C. Unnikrishnan | A. Urban | H. Vahlbruch | G. Vajente | G. Valdes | N. Bakel | M. Beuzekom | J. Brand | L. Schaaf | J. Heijningen | M. Vardaro | S. Vass | E. Huerta | J. Antelis | Z. Etienne | M. Fishbach | D. George | E. Katsavounidis | S. Rosofsky | E. Seidel | Y. Zlochower | Zoheyr Doctor | D. Holz | H. Chen | R. Abbott | T. Abbott | S. Abraham | F. Acernese | K. Ackley | C. Adams | R. Adhikari | V. Adya | C. Affeldt | M. Agathos | K. Agatsuma | N. Aggarwal | O. Aguiar | L. Aiello | A. Ain | P. Ajith | A. Allocca | P. Altin | A. Amato | A. Ananyeva | W. Anderson | S. Angelova | S. Appert | M. Araya | J. Areeda | M. Arène | S. Ascenzi | G. Ashton | S. Aston | P. Astone | F. Aubin | P. Aufmuth | K. AultONeal | C. Austin | V. Avendano | F. Badaracco | M. Bader | S. Bae | G. Ballardin | S. Ballmer | S. Banagiri | J. Barayoga | B. Barish | D. Barker | S. Barnum | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | D. Barta | J. Bartlett | I. Bartos | R. Bassiri | A. Basti | M. Bawaj | J. Bayley | M. Bazzan | M. Bejger | D. Beniwal | G. Bergmann | S. Bernuzzi | C. Berry | D. Bersanetti | A. Bertolini | J. Betzwieser | R. Bhandare | J. Bidler | I. Bilenko | G. Billingsley | R. Birney | O. Birnholtz | S. Biscans | S. Biscoveanu | A. Bisht | M. Bitossi | J. Blackburn | C. Blair | D. Blair | R. Blair | N. Bode | M. Boer | Y. Boetzel | G. Bogaert | F. Bondu | E. Bonilla | R. Bonnand | P. Booker | R. Bork | V. Boschi | V. Bossilkov | Y. Bouffanais | A. Bozzi | C. Bradaschia | P. Brady | A. Bramley | M. Branchesi | J. Brau | T. Briant | J. Briggs | F. Brighenti | A. Brillet | M. Brinkmann | P. Brockill | A. Brooks | D. Brown | S. Brunett | A. Buikema | T. Bulik | H. Bulten | A. Buonanno | D. Buskulic | R. Byer | M. Cabero | L. Cadonati | G. Cagnoli | C. Cahillane | J. Bustillo | T. Callister | E. Calloni | J. Camp | K. Cannon | H. Cao | J. Cao | F. Carbognani | M. Carney | Gregorio Carullo | J. Diaz | C. Casentini | S. Caudill | M. Cavaglià | R. Cavalieri | G. Cella | E. Cesarini | K. Chakravarti | S. Chao | P. Charlton | E. Chase | É. Chassande-Mottin | M. Chaturvedi | K. Chatziioannou | X. Chen | Y. Chen | H.-P. Cheng | C. Cheong | H. Chia | A. Chincarini | A. Chiummo | G. Cho | H. Cho | M. Cho | N. Christensen | Q. Chu | S. Chua | K. Chung | S. Chung | G. Ciani | A. Ciobanu | R. Ciolfi | F. Cipriano | A. Cirone | F. Clara | J. Clark | P. Clearwater | F. Cleva | P. Cohadon | M. Colleoni | C. Collette | C. Collins | M. Constancio | L. Conti | S. Cooper | P. Corban | T. Corbitt | K. R. Corley | N. Cornish | A. Corsi | S. Cortese | C. Costa | R. Cotesta | M. Coughlin | S. Coughlin | J. Coulon | S. Countryman | D. Coward | M. Cowart | D. Coyne | R. Coyne | J. Creighton | T. Creighton | M. Croquette | S. Crowder | T. Cullen | A. Cumming | L. Cunningham | E. Cuoco | T. Canton | S. Danilishin | S. D’Antonio | K. Danzmann | L. Datrier | V. Dattilo | I. Dave | D. Davis | E. Daw | D. DeBra | M. Deenadayalan | J. Degallaix | M. D. Laurentis | W. D. Pozzo | L. DeMarchi | N. Demos | T. Dent | R. Pietri | R. Rosa | C. D. Rossi | R. DeSalvo | O. D. Varona | S. Dhurandhar | T. Dietrich | L. Fiore | M. Giovanni | T. D. Girolamo | A. Lieto | B. Ding | S. D. Pace | I. Palma | F. Renzo | A. Dmitriev | F. Donovan | K. Dooley | S. Doravari | I. Dorrington | T. Downes | M. Drago | J. Driggers | Z. Du | P. Dupej | S. Dwyer | P. Easter | T. Edo | A. Effler | J. Eichholz | S. Eikenberry | M. Eisenmann | R. Eisenstein | D. Estevez | T. Etzel | M. Evans | T. Evans | V. Fafone | H. Fair | X. Fan | S. Farinon | B. Farr | W. Farr | E. Fauchon-Jones | Marc Favata | M. Fays | M. Fazio | J. Feicht | Á. Fernández-Galiana | I. Ferrante | T. A. Ferreira | F. Fidecaro | I. Fiori | D. Fiorucci | R. Fisher | J. Fishner | M. Fitz-Axen | R. Flaminio | E. Flynn | H. Fong | J. Font | P. Forsyth | J. Fournier | S. Frasca | F. Frasconi | Z. Frei | A. Freise | R. Frey | P. Fritschel | V. Frolov | P. Fulda | M. Fyffe | H. Gabbard | B. Gadre | S. Gaebel | S. Gaonkar | F. Garufi | B. Gateley | S. Gaudio | V. Gayathri | G. Gemme | A. Gennai | J. George | L. Gergely | S. Ghonge | Abhirup Ghosh | A. Ghosh | S. Ghosh | B. Giacomazzo | J. Giaime | K. Giardina | K. Gill | P. Godwin | E. Goetz | R. Goetz | B. Goncharov | A. Gopakumar | S. Gossan | M. Gosselin | R. Gouaty | A. Grado | M. Granata | A. Grant | S. Gras | P. Grassia | C. Gray | R. Gray | G. Greco | A. Green | R. Green | E. Gretarsson | H. Grote | S. Grunewald | G. Guidi | H. Gulati | Y. Guo | E. Gustafson | R. Gustafson | L. Haegel | O. Halim | E. Hall | E. Hamilton | G. Hammond | M. Haney | M. Hanke | J. Hanks | C. Hanna | O. Hannuksela | J. Hanson | T. Hardwick | K. Haris | J. Harms | G. Harry | I. Harry | C. Haster | K. Haughian | F. Hayes | J. Healy | A. Heidmann | M. Heintze | H. Heitmann | G. Hemming | M. Hendry | I. Heng | F. Vivanco | M. Heurs | S. Hild | S. Hochheim | A. M. Holgado | N. Holland | K. Holt | P. Hopkins | C. Horst | J. Hough | E. Howell | C. Hoy | B. Hughey | S. Husa | S. Huttner | T. Huynh--Dinh | B. Idzkowski | A. Iess | C. Ingram | G. Intini | M. Isi | B. Iyer | T. Jacqmin | S. Jadhav | K. Jani | N. N. Janthalur | P. Jaranowski | A. Jenkins | J. Jiang | A. Jones | D. Jones | R. Jones | R. Jonker | L. Ju | J. Junker | C. Kalaghatgi | V. Kalogera | B. Kamai | S. Kandhasamy | G. Kang | J. Kanner | S. Kapadia | S. Karki | R. Kashyap | M. Kasprzack | S. Katsanevas | W. Katzman | K. Kawabe | I. Khan | M. Khursheed | J. Kim | W. Kim | C. Kimball | M. Kinley-Hanlon | R. Kirchhoff | T. Knowles | P. Koch | G. Koekoek | N. Koper | N. Krishnendu | A. Kumar | S. Kwang | T. Lam | B. Lane | R. Lang | R. Lanza | M. Laxen | Y. Lecoeuche | H. W. Lee | J. Lee | J. Lehmann | J. Li | K. Li | X. Li | F. Linde | S. Linker | J. Liu | X. Liu | R. K. Lo | L. London | A. Longo | C. Lousto | G. Lovelace | H. Luck | D. Lumaca | R. Macas | A. Macquet | I. M. Hernandez | A. Malik | C. Markakis | A. Markowitz | A. Marquina | S. Marsat | E. Massera | S. Mastrogiovanni | A. Matas | L. McCuller | D. McManus | T. Mcrae | M. Mehmet | A. Mehta | L. Mereni | E. Merilh | R. Metzdorff | C. Michel | L. Milano | A. Miller | J. Mills | M. Milovich-Goff | O. Minazzoli | A. Mishkin | T. Mistry | G. Mo | K. Mogushi | S. Morisaki | N. Mukund | E. Muniz | J. Neilson | T. Nelson | M. Nery | K. Ng | S. Ng | P. Nguyen | C. North | B. O'Brien | H. Ohta | M. A. Okada | B. O'reilly | R. Ormiston | L. F. Ortega | R. O’Shaughnessy | S. Ossokine | D. Ottaway | A. Pace | G. Pagano | M. Page | B. Patricelli | C. Perez | H. Pfeiffer | K. S. Phukon | M. Pirello | D. T. Pong | S. Ponrathnam | P. Popolizio | A. K. Prajapati | K. Prasai | R. Prasanna | G. Pratten | L. Prokhorov | M. Purrer | P. J. Quinonez | C. Rajan | B. Rajbhandari | K. Ramirez | A. Ramos-Buades | J. Rana | K. Rao | C. J. Richardson | J. Richardson | M. Rizzo | M. Romanelli | C. Romel | K. Rose | M. Ross | K. Ryan | M. Sakellariadou | L. Salconi | L. Sanchez | N. Sanchis-Gual | K. Santiago | N. Sarin | M. Scheel | J. Scheuer | A. Schonbeck | B. Schulte | A. Sengupta | N. Sennett | T. Shaffer | P. Sharma | H. Shen | R. Shink | S. Shyamsundar | M. Sieniawska | N. Singh | A. Singhal | V. Skliris | B. Slagmolen | T. Slaven-Blair | S. Somala | E. Sowell | A. Spencer | V. Srivastava | K. Staats | C. Stachie | D. Steer | S. Stevenson | D. Stops | K. Strain | A. Strunk | V. Sudhir | S. Sunil | A. Sur | J. Suresh | S. Tait | C. Talbot | J. Tasson | S. R. Thondapu | S. Tiwari | S. Tiwari | K. Toland | Z. Tornasi | D. Toyra | A. Trovato | R. Trudeau | K. W. Tsang | R. Tso | L. Tsukada | D. Tsuna | K. Ueno | D. Vander-Hyde | V. Varma | A. Vecchio | G. Vedovato | J. Veitch | P. Veitch | K. Venkateswara | Gautam Venugopalan | D. Verkindt | F. Vetrano | A. Viets | J. Vinet | S. Vitale | T. Vo | H. Vocca | C. Vorvick | S. Vyatchanin | L. Wade | M. Wade | R. Walet | M. Walker | L. Wallace | S. Walsh | J. Wang | W. H. Wang | Y. Wang | R. Ward | J. Warner | M. Was | J. Watchi | B. Weaver | M. Weinert | A. Weinstein | R. Weiss | F. Wellmann | J. Westhouse | K. Wette | B. Whiting | C. Whittle | D. Wilken | D. Williams | A. Williamson | J. Willis | B. Willke | M. Wimmer | W. Winkler | C. Wipf | G. Woan | J. Woehler | J. Wofford | J. Wright | D. Wu | D. Wysocki | L. Xiao | H. Yamamoto | L. Yang | M. Yap | D. W. Yeeles | Hang Yu | Haocun Yu | S. Yuen | M. Zanolin | T. Zelenova | J. Zendri | M. Zevin | J. Zhang | L. Zhang | T. Zhang | C. Zhao | M. Zhou | Z. Zhou | X. Zhu | A. Zimmerman | M. Zucker | J. Zweizig | T. Carver | D. Tao | O. Salafia | S. M'arka | G. Allen | S. Antier | N. Arnaud | K. Arun | B. B'ecsy | I. Belahcene | B. Berger | M. Bizouard | J. Blackman | S. Bose | M. J. B. Rosell | M. Canepa | F. Cavalier | P. Cerd'a-Dur'an | D. Chatterjee | E. Coccia | D. Cohen | I. Cordero-Carri'on | G. D'alya | Beatrice D'Angelo | M. Davier | S. Del'eglise | M. D'iaz | J. Ducoin | R. Essick | F. Feng | V. Frey | C. Garc'ia-Quir'os | G. Gonz'alez | P. Gruning | M. Hannam | P. Hello | Y. Huang | N. Johnson-McDaniel | F. K'ef'elian | A. Kr'olak | A. Lartaux-Vollard | Z. M'arka | A. Nagar | A. Perego | G. Riemenschneider | D. Rosi'nska | B. Sathyaprakash | A. Stuver | A. Torres-Forn'e | M. Vas'uth | A. Vicer'e | L. Wen | J. Whelan | L. White | A. Zadro.zny | G. Davies | T. Denker | S. Mukherjee | J. O'Dell | C. Torrie | A. Dasgupta | W. Kastaun | C. Kramer | H. Pan | K. Arai | S. Steinlechner | E. Placidi | A. Adams | S. Akcay | S. Anand | S. Anderson | S. Ansoldi | S. M. Aronson | Y. Asali | A. Baer | S. Bagnasco | J. Baird | M. Ball | A. Bals | A. Balsamo | D. Bankar | R. S. Bankar | C. Barbieri | P. Barneo | B. Becher | V. Bedakihale | M. Benjamin | T. F. Bennett | J. Bentley | F. Bergamin | A. Bhandari | D. Bhattacharjee | M. Bischi | O. Blanch | F. Bobba | M. Boldrini | V. Boudart | M. Breschi | J. Brooks | G. Bruno | R. Bruntz | R. Buscicchio | M. Caesar | J. Callaghan | G. Carapella | M. Carpinelli | W. Chaibi | C.-L. Chan | C. Chan | K. Chandra | P. Chanial | D. Chattopadhyay | A. Chen | F. Chiadini | R. Chierici | S. Choate | P. Ciecielag | M. Cie'slar | M. Cifaldi | E. Clark | L. Clarke | S. Clesse | M. Colpi | S. Corezzi | D. Corre | B. Cousins | J. Cudell | R. Cummings | M. Curylo | A. Dana | L. M. DaneshgaranBajastani | B. Danila | C. Darsow-Fromm | R. Dean | V. D. Favero | F. Lillo | N. D. Lillo | F. Matteis | V. D’Emilio | A. Depasse | M. Diaz-Ortiz | N. Didio | C. DiFronzo | C. Giorgio | F. D. Giovanni | A. K. Divakarla | L. D’Onofrio | O. Durante | D. D'urso | P. Duverne | G. Eddolls | B. Edelman | O. Edy | A. Ejlli | L. Errico | H. Estell'es | B. Ewing | A. M. Farah | E. Fenyvesi | D. Ferguson | P. Figura | R. Fittipaldi | V. Fiumara | E. Floden | G. G. Fronz'e | J. Gais | S. Galaudage | R. Gamba | D. Ganapathy | A. Ganguly | B. Garaventa | R. George | L. Giacoppo | D. Gibson | C. Gier | P. Giri | J. Glanzer | A. Gleckl | N. Gohlke | B. Grace | V. Granata | H. L. Griggs | G. Grignani | A. Grimaldi | E. Grimes | S. Grimm | J. G. Guerrero | A. R. Guimaraes | G. Guix'e | Anchal Gupta | Anuradha Gupta | P. Gupta | F. Guzmán | H. Hansen | T. Hansen | T. Harder | D. Hartwig | R. Hasskew | J. Heinze | J. Heinzel | F. Hellman | A. Helmling-Cornell | E. Hennes | J. Hennig | M. Hennig | P. Hill | A. Hines | E. Hofgard | J. Hohmann | I. J. Hollows | Z. J. Holmes | D. Hoyland | M. Hubner | A. Huddart | V. Hui | B. Hutzler | R. Huxford | S. Imperato | H. Inchauspe | V. JaberianHamedan | S. Jadhav | K. Janssens | D. Jariwala | R. Jaume | M. Jeunon | G. Johns | J. Jones | P. Jones | D. Kapasi | C. Karathanasis | S. Khadka | N. Khetan | G. Kim | E. Knyazev | M. Kolstein | K. Komori | M. Kovalam | Rahul Kumar | Rakesh Kumar | K. Kuns | D. Laghi | E. Lalande | A. Lamberts | I. L. Rosa | E. Leon | A. Li | J. Linley | M. Llorens-Monteagudo | A. Lockwood | I. MacMillan | C. Magazzù | S. Maliakal | M. Mapelli | M. Martinez | V. Martinez | H. Masalehdan | M. Mateu-Lucena | M. Matiushechkina | E. Maynard | C. McIsaac | D. Melchor | A. Menéndez-Vázquez | K. Merfeld | J. D. Merritt | F. Meylahn | A. Mhaske | A. Miani | I. Michaloliakos | S. Mohite | I. Molina | M. Molina-Ruiz | M. Mondin | F. Morawski | S. Mozzon | F. Muciaccia | S. Nadji | B. Neil | C. Nguyen | S. Nichols | M. Noh | D. Nothard | G. Oganesyan | C. Olivetto | C. Osthelder | G. Pagliaroli | T. Pang | A. Paolone | M. Patel | E. Payne | T. Pechsiri | M. Pegoraro | C. P'erigois | S. Perries | J. Petermann | D. Petterson | K. A. Pham | M. Piendibene | L. Pierini | F. Pilo | K. Piotrzkowski | W. Plastino | C. Pluchar | E. Polini | A. Poverman | M. Pracchia | P. Prosposito | L. Prudenzi | A. Puecher | F. Puosi | G. Raaijmakers | N. Radulesco | H. Rafferty | S. Rail | T. Ramirez | U. Rapol | B. Ratto | P. Rettegno | L. Richardson | J. Rocha | S. Rodriguez | R. D. Rodriguez-Soto | A. Romero | I. Romero-Shaw | S. Ronchini | C. A. Rose | D. Rose | S. Rowlinson | S. Roy | J. Sadiq | J. Sánchez | L. Sandles | E. Santos | T. Saravanan | V. Savant | D. Sawant | S. Sayah | D. Schaetzl | A. Schindler-Tyka | O. Schwarm | E. Schwartz | M. Seglar-Arroyo | S. Sharifi | A. Sharma | M. Shikauchi | K. Shukla | D. Singh | A. Singha | V. Sipala | J. Smetana | K. Soni | S. Soni | V. Sordini | N. Sorrentino | R. Soulard | M. Spera | J. Steinhoff | G. Stolle-mcallister | M. Stover | J. Sudbeck | S. Sudhagar | H. Suh | H. Sun | A. Tanasijczuk | A. Tapia | E. Martin | R. Tenorio | L. Terkowski | L. Thomas | J. Thompson | A. Tolley | I. T. E. Melo | A. Tran | A. Trapananti | A. Tripathee | D. Tsai | T. Tsutsui | A. S. Ubhi | R. Udall | A. Utina | A. Vajpeyi | M. Valentini | V. Valsan | A. Vargas | J. Venneberg | Y. Verma | D. Veske | A. Vijaykumar | V. Villa-Ortega | G. Wallace | S. Wang | N. Y. Washington | L. Wei | D. White | D. Wilson | I. C. F. Wong | J. Wrangel | Y. Yang | Z. Yang | A. Yoon | R. Zhang | G. Zhao | Y. Zheng
[1] Bruce Allen,et al. FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.
[2] Jaime Fern'andez del R'io,et al. Array programming with NumPy , 2020, Nature.
[3] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[4] J. R. Palamos,et al. Sensitivity and performance of the Advanced LIGO detectors in the third observing run , 2020, Physical Review D.
[5] P. Lasky,et al. Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.
[6] S. Fairhurst,et al. Two-harmonic approximation for gravitational waveforms from precessing binaries , 2019, Physical Review D.
[7] D. Davis,et al. Utilizing aLIGO glitch classifications to validate gravitational-wave candidates , 2020, Classical and Quantum Gravity.
[8] Duncan A. Brown,et al. DQSEGDB: A time-interval database for storing gravitational wave observatory metadata , 2020, SoftwareX.
[9] Cody Messick,et al. A self-consistent method to estimate the rate of compact binary coalescences with a Poisson mixture model , 2019, Classical and Quantum Gravity.
[10] E. Berger,et al. Does GW190425 Require an Alternative Formation Pathway than a Fast-merging Channel? , 2020, The Astrophysical Journal.
[11] Dimensional regularization of the gravitational interaction of point masses , 2001, gr-qc/0105038.
[12] P. K. Panda,et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .
[13] D Huet,et al. GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.
[14] B. A. Boom,et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .
[15] S. Klimenko,et al. Advanced LIGO , 2014, 1411.4547.
[16] Michael Purrer,et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.
[17] M. Melamed. Detection , 2021, SETI: Astronomy as a Contact Sport.
[18] B. Mours,et al. Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era , 2015, 1512.02864.
[19] F. Pannarale,et al. Modeling the gravitational wave signature of neutron star black hole coalescences , 2020, Physical Review D.
[20] Alexander H. Nitz,et al. Detecting Binary Compact-object Mergers with Gravitational Waves: Understanding and Improving the Sensitivity of the PyCBC Search , 2017, 1705.01513.
[21] D Huet,et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .
[22] B. A. Boom,et al. GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.
[23] N. Mavalvala,et al. Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.
[24] The Ligo Scientific Collaboration,et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.
[25] Vivien Raymond,et al. PESummary: The code agnostic Parameter Estimation Summary page builder , 2020, SoftwareX.
[26] John T. Whelan,et al. Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data , 2013, 1310.5633.
[27] T. Littenberg,et al. Noise spectral estimation methods and their impact on gravitational wave measurement of compact binary mergers , 2019, Physical Review D.
[28] G. Ashton,et al. Massively parallel Bayesian inference for transient gravitational-wave astronomy , 2020, Monthly Notices of the Royal Astronomical Society.
[29] B. Sathyaprakash,et al. Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.
[30] J. K. Blackburn,et al. Tests of General Relativity with GW170817. , 2018, Physical review letters.
[31] R. Narayan,et al. THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.
[33] K. G. Arun,et al. Ready-to-use post-Newtonian gravitational waveforms for binary black holes with nonprecessing spins: An update , 2016, 1601.05588.
[34] Andrea Taracchini,et al. Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity , 2016, 1607.05661.
[35] E. Thrane,et al. The Mass Distribution of Galactic Double Neutron Stars , 2019, The Astrophysical Journal.
[36] Andrea Taracchini,et al. Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics , 2018, Physical Review D.
[37] P. Ajith,et al. Effects of nonquadrupole modes in the detection and parameter estimation of black hole binaries with nonprecessing spins , 2016, 1612.05608.
[38] M. Pürrer,et al. Gravitational waveform accuracy requirements for future ground-based detectors , 2019, Physical Review Research.
[39] K. Chatziioannou,et al. Inferring the maximum and minimum mass of merging neutron stars with gravitational waves , 2020, Physical Review D.
[40] S. Roy,et al. Effectual template banks for upcoming compact binary searches in Advanced-LIGO and Virgo data , 2019, Physical Review D.
[41] P. B. Covas,et al. Characterization of systematic error in Advanced LIGO calibration , 2020, Classical and Quantum Gravity.
[42] T. Littenberg,et al. Systematic biases in parameter estimation of binary black-hole mergers , 2012, 1210.0893.
[43] T. Damour,et al. Effective one-body approach to general relativistic two-body dynamics , 1999 .
[44] R. Magee,et al. The GstLAL template bank for spinning compact binary mergers in the second observation run of Advanced LIGO and Virgo , 2018, 1812.05121.
[45] The Ligo Scientific Collaboration,et al. Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.
[46] Yi Pan,et al. Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.
[47] C. Pankow,et al. Localization of Compact Binary Sources with Second-generation Gravitational-wave Interferometer Networks , 2019, The Astrophysical Journal.
[48] R. Magee,et al. Sub-threshold Binary Neutron Star Search in Advanced LIGO’s First Observing Run , 2019, The Astrophysical Journal.
[49] F. Marion,et al. The MBTA pipeline for detecting compact binary coalescences in the third LIGO–Virgo observing run , 2020, Classical and Quantum Gravity.
[50] B. S. Sathyaprakash,et al. Stochastic template placement algorithm for gravitational wave data analysis , 2009, 0908.2090.
[51] E. Thrane,et al. On the origin of GW190425 , 2020, 2001.06492.
[52] F. Pannarale,et al. Bayesian inference analysis of unmodelled gravitational-wave transients , 2018, Classical and Quantum Gravity.
[53] L. S. Collaboration,et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .
[54] Luciano Rezzolla,et al. THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS , 2016, 1605.01938.
[55] Nelson Christensen,et al. Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis , 1998 .
[56] L. Naticchioni. The payloads of Advanced Virgo: current status and upgrades , 2018 .
[57] Milwaukee,et al. Efficient asymptotic frame selection for binary black hole spacetimes using asymptotic radiation , 2011, 1109.5224.
[58] Scott E. Field,et al. Constraining the parameters of GW150914 and GW170104 with numerical relativity surrogates , 2018, Physical Review D.
[59] Iris de Ruiter,et al. Incorporation of Statistical Data Quality Information into the GstLAL Search Analysis , 2020, 2010.15282.
[60] T. Damour,et al. Relativistic tidal properties of neutron stars , 2009, 0906.0096.
[61] Flanagan,et al. Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.
[62] K. Cannon,et al. Likelihood-Ratio Ranking Statistic for Compact Binary Coalescence Candidates with Rate Estimation , 2015, 1504.04632.
[63] P. K. Panda,et al. GW190412: Observation of a binary-black-hole coalescence with asymmetric masses , 2020 .
[64] A. Sintes,et al. Impact of gravitational radiation higher order modes on single aligned-spin gravitational wave searches for binary black holes , 2015, 1511.02060.
[65] J. R. Palamos,et al. Reducing scattered light in LIGO’s third observing run , 2020, Classical and Quantum Gravity.
[66] T. Littenberg,et al. Reconstructing gravitational wave signals from binary black hole mergers with minimal assumptions , 2020, 2003.09456.
[67] Cody Messick,et al. The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO's Second and Advanced Virgo's First Observing Runs , 2019, 1901.08580.
[68] S. Fairhurst,et al. Measuring gravitational-wave higher-order multipoles , 2020, Physical Review D.
[69] B. A. Boom,et al. ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .
[70] J. K. Blackburn,et al. A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo , 2019, The Astrophysical Journal.
[71] T. Littenberg,et al. BayesWave analysis pipeline in the era of gravitational wave observations , 2020, Physical Review D.
[72] M. S. Shahriar,et al. Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run , 2019 .
[73] Jonah Kanner,et al. Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817 , 2018, Physical Review D.
[74] J. R. Palamos,et al. Environmental noise in advanced LIGO detectors , 2021, Classical and Quantum Gravity.
[75] Duncan A. Brown,et al. Reconstructing the calibrated strain signal in the Advanced LIGO detectors , 2017, 1710.09973.
[76] B. Zackay,et al. Detecting gravitational waves with disparate detector responses: Two new binary black hole mergers , 2019, Physical Review D.
[77] N. Leroy,et al. On the background estimation by time slides in a network of gravitational wave detectors , 2009, 0906.2120.
[78] W. Marsden. I and J , 2012 .
[79] P. K. Panda,et al. Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs , 2019, The Astrophysical Journal.
[80] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[81] S. Roy,et al. Effectual template banks for upcoming compact binary searches in Advanced-LIGO and Virgo data , 2017, Physical Review D.
[82] A. Lundgren,et al. 2-OGC: Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO and Virgo Data , 2019, The Astrophysical Journal.
[83] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[84] Gainesville,et al. Constraint Likelihood analysis for a network of gravitational wave detectors , 2005 .
[85] Yi Pan,et al. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism , 2013, 1307.6232.
[86] Self-interaction spin effects in inspiralling compact binaries , 2005, astro-ph/0504538.
[87] Y. Wang,et al. Effects of waveform model systematics on the interpretation of GW150914 , 2017 .
[88] K. Covey,et al. A noninteracting low-mass black hole–giant star binary system , 2018, Science.
[89] Y. Wang,et al. Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 , 2016, 1602.03845.
[90] Robin Kirschbaum,et al. Questions and answers , 2009, Diabetes, obesity & metabolism.
[91] B. A. Boom,et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.
[92] A. Krolak,et al. Coalescing binaries—Probe of the universe , 1987 .
[93] Gravitational waves from inspiraling compact binaries: The quadrupole-moment term , 1997, gr-qc/9709032.
[94] J. R. Palamos,et al. LIGO detector characterization in the second and third observing runs , 2021, Classical and Quantum Gravity.
[95] J. Speagle. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.
[96] R. Schnabel,et al. First long-term application of squeezed states of light in a gravitational-wave observatory. , 2013, Physical review letters.
[97] C. Berry,et al. You Can’t Always Get What You Want: The Impact of Prior Assumptions on Interpreting GW190412 , 2020, The Astrophysical Journal.
[98] P. K. Panda,et al. Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo , 2019, 1912.11716.
[99] J. K. Blackburn,et al. A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.
[100] Gainesville,et al. The Advanced LIGO photon calibrators. , 2016, The Review of scientific instruments.
[101] E. Majorana,et al. The Advanced Virgo monolithic fused silica suspension , 2016 .
[102] Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses , 2005, gr-qc/0503044.
[103] Eugenio Coccia,et al. Thermal effects and their compensation in Advanced Virgo , 2012 .
[104] B. Zackay,et al. Highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run , 2019, Physical Review D.
[105] A. Katsaggelos,et al. Discovering features in gravitational-wave data through detector characterization, citizen science and machine learning , 2021, 2103.12104.
[106] C. Broeck,et al. Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era , 2011, 1111.3044.
[107] M Hannam,et al. Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.
[108] Y. Arai,et al. KAGRA: 2.5 generation interferometric gravitational wave detector , 2018, Nature Astronomy.
[109] Matthew West,et al. The PyCBC search for gravitational waves from compact binary coalescence , 2015, 1508.02357.
[110] L. Gualtieri,et al. Tidal deformations of a spinning compact object , 2015, 1503.07365.
[111] B. A. Boom,et al. A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals , 2019, Classical and Quantum Gravity.
[112] P. Alam. ‘T’ , 2021, Composites Engineering: An A–Z Guide.
[113] J. Gair,et al. Counting and confusion: Bayesian rate estimation with multiple populations , 2013, 1302.5341.
[114] N. Yunes,et al. Approximate Universal Relations for Neutron Stars and Quark Stars , 2016, 1608.02582.
[115] C. Broeck,et al. Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.
[116] K. Cannon,et al. A method to estimate the significance of coincident gravitational-wave observations from compact binary coalescence , 2012, 1209.0718.
[117] Machine-learning non-stationary noise out of gravitational wave detectors , 2019, Physical Review D.
[118] Santiago de Compostela,et al. Dynamic normalization for compact binary coalescence searches in non-stationary noise , 2020, Classical and Quantum Gravity.
[119] Y. Wang,et al. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..
[120] Bruce Allen. χ2 time-frequency discriminator for gravitational wave detection , 2005 .
[121] Scott E. Field,et al. Impact of subdominant modes on the interpretation of gravitational-wave signals from heavy binary black hole systems , 2019, Physical Review D.
[122] Michael Boyle,et al. Parameter Estimation Method that Directly Compares Gravitational Wave Observations to Numerical Relativity , 2017, 1705.09833.
[123] N. Leroy,et al. Omicron: A tool to characterize transient noise in gravitational-wave detectors , 2020, SoftwareX.
[124] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses , 1964 .
[125] Texas Tech University,et al. Multi-messenger observations of a binary neutron star merger , 2017 .
[126] Gabriela Gonzalez,et al. The LIGO Scientific Collaboration , 2015 .
[127] Frank Ohme,et al. First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries. , 2017, Physical review letters.
[128] Michael Purrer,et al. The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity , 2016, 1612.09566.
[129] T. Damour,et al. Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger. , 2014, Physical review letters.
[130] K. Chatziioannou,et al. Constructing gravitational waves from generic spin-precessing compact binary inspirals , 2017, 1703.03967.
[131] W. Farr,et al. Black holes in the low-mass gap: Implications for gravitational-wave observations , 2019, Physical Review D.
[132] Michael Purrer,et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.
[133] M. J. Williams,et al. Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue , 2020, Monthly Notices of the Royal Astronomical Society.
[134] M. J. Williams,et al. Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog , 2020, 2010.14533.
[135] F. Ohme,et al. Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter , 2014, 1408.1810.
[136] G. Mendell,et al. Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations , 2016, 1608.05134.
[137] Blanchet,et al. Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.
[138] Vetoes for inspiral triggers in LIGO data , 2004, gr-qc/0403114.
[139] B. A. Boom,et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.
[140] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[141] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[142] A. Schimmel,et al. Vertical and Horizontal Seismic Isolation Performance of the Advanced Virgo External Injection Bench Seismic Attenuation System , 2015 .
[143] Michael Purrer,et al. Surrogate model for an aligned-spin effective-one-body waveform model of binary neutron star inspirals using Gaussian process regression , 2018, Physical Review D.
[144] P. Schmidt,et al. Measuring precession in asymmetric compact binaries , 2020 .
[145] R. Magee,et al. Fast evaluation of multidetector consistency for real-time gravitational wave searches , 2019, Physical Review D.
[146] G. Ciani,et al. Brownian force noise from molecular collisions and the sensitivity of advanced gravitational wave observatories , 2011, 1108.3254.
[147] A. Samajdar,et al. Improving the NRTidal model for binary neutron star systems , 2019, Physical Review D.
[148] P. K. Panda,et al. GW190814: Gravitational Waves from the Coalescence of a 23 M$_\odot$ Black Hole with a 2.6 M$_\odot$ Compact Object , 2020, 2006.12611.
[149] C. Pankow,et al. Novel scheme for rapid parallel parameter estimation of gravitational waves from compact binary coalescences , 2015, 1502.04370.
[150] Y. Wang,et al. The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914 , 2016 .
[151] Lawrence E. Kidder,et al. Multipolar effective-one-body waveforms for precessing binary black holes: Construction and validation , 2020, Physical Review D.
[152] V. Cardoso,et al. Equation-of-state-independent relations in neutron stars , 2013, 1304.2052.
[153] Lawrence E. Kidder,et al. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach. , 2016, Physical review letters.
[154] E. Porter,et al. Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order , 2015, 1501.01529.
[155] T. Dent,et al. Optimizing gravitational-wave searches for a population of coalescing binaries: Intrinsic parameters , 2013, 1311.7174.
[156] B. Zackay,et al. New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo , 2019, Physical Review D.
[157] Michael Purrer,et al. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy , 2016, 1611.00332.
[158] C. Kim,et al. Parameter estimation of gravitational waves from precessing black hole-neutron star inspirals with higher harmonics , 2014, 1403.0544.
[159] A. Chiavassa,et al. The Mass Function of GX 339–4 from Spectroscopic Observations of Its Donor Star , 2017, 1708.04667.
[160] D. Champion,et al. Formation of Double Neutron Star Systems , 2017, 1706.09438.
[161] Jianhua Lin,et al. Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.
[162] S. Fairhurst,et al. Identifying when precession can be measured in gravitational waveforms , 2020, 2010.04131.
[163] Karsten Danzmann,et al. Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. , 2016, Physical review letters.
[164] Joshua R. Smith,et al. A hierarchical method for vetoing noise transients in gravitational-wave detectors , 2011, 1107.2948.
[165] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[166] D Huet,et al. Tests of General Relativity with GW150914. , 2016, Physical review letters.
[167] V. Necula,et al. Transient analysis with fast Wilson-Daubechies time-frequency transform , 2012 .
[168] P. K. Panda,et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{⊙}. , 2020, Physical review letters.
[169] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[170] Tomoki Isogai,et al. Used percentage veto for LIGO and virgo binary inspiral searches , 2010 .
[171] B. A. Boom,et al. Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.
[172] David Blair,et al. Observation of Parametric Instability in Advanced LIGO. , 2015, Physical review letters.
[173] P. J. King,et al. Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO , 2018, Physical Review D.
[174] G. Mitselmakher,et al. A coherent method for detection of gravitational wave bursts , 2004 .
[175] R. Cotesta,et al. Frequency-domain reduced-order model of aligned-spin effective-one-body waveforms with higher-order modes , 2020, 2003.12079.
[176] J. R. Palamos,et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. , 2019, Physical review letters.
[177] B. A. Boom,et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.
[178] S. Fairhurst,et al. When will we observe binary black holes precessing? , 2019, Physical Review D.
[179] B. A. Boom,et al. Calibration of advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2 , 2018, Classical and Quantum Gravity.
[180] P. B. Covas,et al. Point absorbers in Advanced LIGO. , 2021, Applied optics.
[181] D. Holz,et al. Distance measures in gravitational-wave astrophysics and cosmology , 2017, 1709.08079.
[182] G. Mitselmakher,et al. Constraint likelihood method: generalization for colored noise. , 2006 .
[183] Alexander H. Nitz,et al. 1-OGC: The First Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data , 2018, The Astrophysical Journal.
[184] Agata Trovato,et al. GWOSC: Gravitational Wave Open Science Center , 2019, Proceedings of The New Era of Multi-Messenger Astrophysics — PoS(Asterics2019).
[185] O. Pols,et al. The Formation of Double Neutron Star Systems , 2004 .
[186] I. Mandel,et al. Binary population synthesis with probabilistic remnant mass and kick prescriptions , 2020, Monthly Notices of the Royal Astronomical Society.
[187] P. Ajith,et al. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.
[188] Jon M. Miller,et al. The Masses and Spins of Neutron Stars and Stellar-Mass Black Holes , 2014, 1408.4145.
[189] S. Bernuzzi,et al. Closed-form tidal approximants for binary neutron star gravitational waveforms constructed from high-resolution numerical relativity simulations , 2017, 1706.02969.
[190] M. Blom. Seismic attenuation for Advanced Virgo: Vibration isolation for the external injection bench , 2015 .
[191] E. Ochsner,et al. Asymptotic frame selection for binary black hole spacetimes II: Post-Newtonian limit , 2012, 1205.2287.
[192] J. Lattimer. The Nuclear Equation of State and Neutron Star Masses , 2012, 1305.3510.
[193] A. Katsaggelos,et al. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science , 2016, Classical and quantum gravity.
[194] Vincent Loriette,et al. Noise from scattered light in Virgo's second science run data , 2010 .
[195] Frank Ohme,et al. Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.
[196] Charles D. Bailyn,et al. THE MASS DISTRIBUTION OF STELLAR BLACK HOLES , 1998 .
[197] Thibault Damour,et al. Transition from inspiral to plunge in binary black hole coalescences , 2000 .
[198] S. Fairhurst,et al. Constraining the Inclinations of Binary Mergers from Gravitational-wave Observations , 2018, The Astrophysical Journal.
[199] Neil J. Cornish,et al. Bayesian inference for spectral estimation of gravitational wave detector noise , 2014, 1410.3852.
[200] D. Keitel,et al. Determining the final spin of a binary black hole system including in-plane spins: Method and checks of accuracy , 2016 .
[201] R. Savage,et al. Fiducial displacements with improved accuracy for the global network of gravitational wave detectors , 2020, Classical and Quantum Gravity.
[202] S. Marsat,et al. Next-to-next-to-leading order spin–orbit effects in the gravitational wave flux and orbital phasing of compact binaries , 2013, 1303.7412.
[203] Duncan A. Brown,et al. Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors , 2012, 1211.6184.
[204] G. Ashton,et al. Multiwaveform inference of gravitational waves , 2019, Physical Review D.
[205] M. J. Williams,et al. Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog , 2020, 2010.14529.
[206] B. Lackey,et al. Systematic and statistical errors in a bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors , 2014, 1402.5156.
[207] Karsten Danzmann,et al. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light , 2019 .
[208] T. Damour,et al. Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals , 2012, 1203.4352.
[209] D. Davis,et al. Improving the sensitivity of Advanced LIGO using noise subtraction , 2018, Classical and Quantum Gravity.
[210] B. Owen,et al. Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.
[211] P. Ajith,et al. Gravitational-wave observations of binary black holes: Effect of nonquadrupole modes , 2014, 1409.2349.
[212] Peter Fritschel,et al. Impact of upconverted scattered light on advanced interferometric gravitational wave detectors. , 2012, Optics express.
[213] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[214] R. Poggiani. Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).
[215] T. Canton,et al. Designing a template bank to observe compact binary coalescences in Advanced LIGO's second observing run , 2017, 1705.01845.
[216] J. Alsing,et al. Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state , 2017, 1709.07889.
[217] A. Masserot,et al. The Advanced Virgo photon calibrators , 2020, Classical and Quantum Gravity.
[218] B. S. Sathyaprakash,et al. Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries , 2015, 1504.04766.
[219] Michael Boyle,et al. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.
[220] C. Broeck,et al. Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects , 2018, Physical Review D.
[221] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[222] E. Poisson,et al. Relativistic theory of tidal Love numbers , 2009, 0906.1366.
[223] Observing an intermediate-mass black hole GW190521 with minimal assumptions , 2020, 2009.11336.
[224] A. Nitz,et al. Extending the PyCBC search for gravitational waves from compact binary mergers to a global network , 2020, Physical Review D.
[225] J. Kissel,et al. Blip glitches in Advanced LIGO data , 2019, Classical and Quantum Gravity.
[226] H. Pfeiffer,et al. Geometric approach to the precession of compact binaries , 2011, 1110.2965.
[227] Suppressing parametric instabilities in LIGO using low-noise acoustic mode dampers , 2019, Physical Review D.
[228] A. Nitz,et al. Real-time Search for Compact Binary Mergers in Advanced LIGO and Virgo's Third Observing Run Using PyCBC Live , 2020, The Astrophysical Journal.
[229] Neil J. Cornish,et al. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.
[230] Alexander H. Nitz,et al. Implementing a search for aligned-spin neutron star - black hole systems with advanced ground based gravitational wave detectors , 2014, 1405.6731.
[231] Marc Favata. Systematic parameter errors in inspiraling neutron star binaries. , 2013, Physical review letters.
[232] P. Alam. ‘L’ , 2021, Composites Engineering: An A–Z Guide.
[233] R. Schofield,et al. Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.
[234] G. Mitselmakher,et al. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.
[235] Finn. Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.
[236] Frank Ohme,et al. Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects , 2018, Physical Review D.
[237] B. A. Boom,et al. Observing gravitational-wave transient GW150914 with minimal assumptions , 2016 .
[238] Cody Messick,et al. Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.
[239] B. A. Boom,et al. THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.
[240] P. Schmidt,et al. Tracking the precession of compact binaries from their gravitational-wave signal , 2010, 1012.2879.
[241] P. Landry,et al. Tidal deformation of a slowly rotating material body: External metric , 2015, 1503.07366.
[242] Joshua R Smith,et al. LigoDV-web: Providing easy, secure and universal access to a large distributed scientific data store for the LIGO scientific collaboration , 2016, Astron. Comput..
[243] P. Schmidt,et al. Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals , 2012, 1207.3088.
[244] A. Taracchini,et al. Dynamical Tides in General Relativity: Effective Action and Effective-One-Body Hamiltonian , 2016, 1608.01907.
[245] Shaughnessy,et al. All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run , 2019 .
[246] B. A. Boom,et al. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model , 2016, 1606.01210.
[247] D. Shoemaker,et al. Detectability of gravitational waves from binary black holes: Impact of precession and higher modes , 2016, 1612.02340.
[248] S. Roy,et al. Hybrid geometric-random template-placement algorithm for gravitational wave searches from compact binary coalescences , 2017, 1702.06771.
[249] Dimitrios Psaltis,et al. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS , 2012, 1201.1006.
[250] P. Graff,et al. PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.
[251] Lawrence E. Kidder,et al. Aligned-spin neutron-star–black-hole waveform model based on the effective-one-body approach and numerical-relativity simulations , 2020, Physical Review D.
[252] T. Littenberg,et al. Enabling high confidence detections of gravitational-wave bursts , 2015, 1511.08752.
[253] B. C. Barish,et al. Summary of Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1 , 2019, 1905.05565.
[254] E. Milotti,et al. Wider look at the gravitational-wave transients from GWTC-1 using an unmodeled reconstruction method , 2019, Physical Review D.
[255] K. Covey,et al. A noninteracting low-mass black hole–giant star binary system , 2019, Science.
[256] Lisa Barsotti,et al. Squeezed vacuum states of light for gravitational wave detectors , 2018, Reports on progress in physics. Physical Society.
[257] V. Necula,et al. Reconstruction of chirp mass in searches for gravitational wave transients , 2016 .
[258] F. Ohme,et al. Including higher order multipoles in gravitational-wave models for precessing binary black holes , 2019, Physical Review D.
[259] K. S. Thorne,et al. The characterization of Virgo data and its impact on gravitational-wave searches , 2012, 1203.5613.
[260] I. Mandel,et al. THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.
[261] Carlos O. Lousto,et al. Remnant of binary black-hole mergers: New simulations and peak luminosity studies , 2016, 1610.09713.
[262] B. Zackay,et al. New search pipeline for compact binary mergers: Results for binary black holes in the first observing run of Advanced LIGO , 2019, Physical Review D.
[263] E. Katsavounidis,et al. Multiresolution techniques for the detection of gravitational-wave bursts , 2004, gr-qc/0412119.
[264] M. S. Shahriar,et al. Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.
[265] Brookhaven National Laboratory,et al. Accelerating parameter inference with graphics processing units , 2019, Physical Review D.
[266] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[267] P. Freire,et al. H E ] 8 M ar 2 01 6 Masses , Radii , and Equation of State of Neutron Stars , 2016 .
[268] B. S. Sathyaprakash,et al. Searching for gravitational waves from binary coalescence , 2012, 1208.3491.
[269] S. Klimenko,et al. Localization of gravitational wave sources with networks of advanced detectors , 2011, 1101.5408.
[270] P. Alam. ‘S’ , 2021, Composites Engineering: An A–Z Guide.
[271] The LIGO Scientific Collaboration,et al. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, 1602.03844.
[272] Scott E. Field,et al. Surrogate models for precessing binary black hole simulations with unequal masses , 2019, Physical Review Research.
[273] P. Graff,et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.
[274] Robert W. Taylor,et al. Model comparison from LIGO-Virgo data on GW170817's binary components and consequences for the merger remnant , 2019, 1908.01012.
[275] B. A. Boom,et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.
[276] Y. Wang,et al. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run , 2017, 1710.02185.
[277] F. Salemi,et al. Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO , 2017, 1711.02009.
[278] T. Littenberg,et al. Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline , 2016, The Astrophysical journal.
[279] J. K. Blackburn,et al. A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.