Extended Wronskian formula for solutions to the Korteweg-deVries equation

A matrix extension is presented for constructing a much broader class of exact solutions to the KdV equation through the Wronskian formulation. The present method can be applied to other soliton equations.

[1]  Junkichi Satsuma,et al.  A Wronskian Representation of N-Soliton Solutions of Nonlinear Evolution Equations , 1979 .

[2]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[3]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[4]  Shu-fang Deng,et al.  The Novel Multi-Soliton Solutions of Equation for Shallow Water Waves , 2003 .

[5]  J. Nimmo,et al.  Rational solutions of the Korteweg-de Vries equation in wronskian form , 1983 .

[6]  J. Satsuma Solitons and Rational Solutions of Nonlinear Evolution Equations (Theory of Nonlinear Waves) , 1978 .

[7]  J. Nimmo,et al.  A bilinear Bäcklund transformation for the nonlinear Schrödinger equation , 1983 .

[8]  V. Matveev,et al.  Generalized Wronskian formula for solutions of the KdV equations: first applications , 1992 .

[9]  Wenxiu Ma Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.

[10]  Kenji Ohkuma,et al.  Multiple-Pole Solutions of the Modified Korteweg-de Vries Equation , 1982 .

[11]  V. Matveev,et al.  Positon-positon and soliton-positon collisions: KdV case , 1992 .

[12]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[13]  Shu-fang Deng,et al.  The Novel Multi-Soliton Solutions of the MKdV–Sine Gordon Equations , 2002 .

[14]  S. Sirianunpiboon,et al.  A note on the wronskian form of solutions of the KdV equation , 1988 .