Entanglement of photons in their dual wave-particle nature

Wave-particle duality is the most fundamental description of the nature of a quantum object, which behaves like a classical particle or wave depending on the measurement apparatus. On the other hand, entanglement represents nonclassical correlations of composite quantum systems, being also a key resource in quantum information. Despite the very recent observations of wave-particle superposition and entanglement, whether these two fundamental traits of quantum mechanics can emerge simultaneously remains an open issue. Here we introduce and experimentally realize a scheme that deterministically generates entanglement between the wave and particle states of two photons. The elementary tool allowing this achievement is a scalable single-photon setup which can be in principle extended to generate multiphoton wave-particle entanglement. Our study reveals that photons can be entangled in their dual wave-particle behavior and opens the way to potential applications in quantum information protocols exploiting the wave-particle degrees of freedom to encode qubits.Here the authors experimentally realize a scheme that deterministically generates entanglement between the wave and particle states of two photons using a scalable all-optical scheme. They achieve this result by first showing generation of controllable single-photon wave-particle superposition states.

[1]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[2]  Philippe Grangier,et al.  Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment , 2006, Science.

[3]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[4]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[5]  Thomas Coudreau,et al.  Entanglement-Enabled Delayed-Choice Experiment , 2012, Science.

[6]  Johannes Kofler,et al.  Delayed-choice gedanken experiments and their realizations , 2014, 1407.2930.

[7]  T. S. Mahesh,et al.  NMR implementation of a quantum delayed-choice experiment , 2011, 1112.3524.

[8]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[9]  S. P. Walborn,et al.  Double-slit quantum eraser , 2001, quant-ph/0106078.

[10]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[11]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[12]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[13]  Guang-Can Guo,et al.  Realization of quantum Wheeler's delayed-choice experiment , 2012, Nature Photonics.

[14]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[15]  Serge Haroche,et al.  Controlling photons in a box and exploring the quantum to classical boundary , 2013, Angewandte Chemie.

[16]  Radu Ionicioiu,et al.  Proposal for a quantum delayed-choice experiment. , 2011, Physical review letters.

[17]  S. Haroche Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary , 2013 .

[18]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[19]  S. Haroche Controlling photons in a box and exploring the quantum to classical boundary (Nobel Lecture). , 2013, Angewandte Chemie.

[20]  Bo Liu,et al.  Cosmic Bell Test: Measurement Settings from Milky Way Stars. , 2016, Physical review letters.

[21]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[22]  A. Truscott,et al.  Wheeler's delayed-choice gedanken experiment with a single atom , 2015, Nature Physics.

[23]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[24]  J. G. Filgueiras,et al.  Experimental analysis of the quantum complementarity principle , 2012, 1201.5951.

[25]  Giuseppe Compagno,et al.  Quantum entanglement of identical particles by standard information-theoretic notions , 2015, Scientific Reports.

[26]  Sandu Popescu,et al.  A Quantum Delayed-Choice Experiment , 2012, Science.

[27]  Yvonne Y Gao,et al.  A Schrödinger cat living in two boxes , 2016, Science.

[28]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[29]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[30]  S. Girvin,et al.  Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States , 2013, Science.

[31]  Rupert Ursin,et al.  Quantum erasure with causally disconnected choice , 2012, Proceedings of the National Academy of Sciences.

[32]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[33]  Anthony Laing,et al.  Testing foundations of quantum mechanics with photons , 2014, Nature Physics.