OpenWorm: overview and recent advances in integrative biological simulation of Caenorhabditis elegans

The adoption of powerful software tools and computational methods from the software industry by the scientific research community has resulted in a renewed interest in integrative, large-scale biological simulations. These typically involve the development of computational platforms to combine diverse, process-specific models into a coherent whole. The OpenWorm Foundation is an independent research organization working towards an integrative simulation of the nematode Caenorhabditis elegans, with the aim of providing a powerful new tool to understand how the organism's behaviour arises from its fundamental biology. In this perspective, we give an overview of the history and philosophy of OpenWorm, descriptions of the constituent sub-projects and corresponding open-science management practices, and discuss current achievements of the project and future directions. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.

[1]  Thomas Vogt,et al.  Reinventing Discovery: The New Era of Networked Science , 2012 .

[2]  Stephen D. Larson,et al.  Application of smoothed particle hydrodynamics to modeling mechanisms of biological tissue , 2016, Adv. Eng. Softw..

[3]  Radu Grosu,et al.  c302: a multiscale framework for modelling the nervous system of Caenorhabditis elegans , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  Oliver Hobert,et al.  Specification of the nervous system. , 2005, WormBook : the online review of C. elegans biology.

[5]  Alon Korngreen,et al.  A Numerical Approach to Ion Channel Modelling Using Whole-Cell Voltage-Clamp Recordings and a Genetic Algorithm , 2007, PLoS Comput. Biol..

[6]  Eve Marder,et al.  Cell Types, Network Homeostasis, and Pathological Compensation from a Biologically Plausible Ion Channel Expression Model , 2014, Neuron.

[7]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  Nicholas Burton,et al.  The Virtual Fly Brain browser and query interface , 2012, Bioinform..

[9]  Abhishek Kumar,et al.  WormGUIDES: an interactive single cell developmental atlas and tool for collaborative multidimensional data exploration , 2015, BMC Bioinformatics.

[10]  O. Hobert,et al.  A cellular and regulatory map of the GABAergic nervous system of C. elegans , 2016, bioRxiv.

[11]  Uri Alon,et al.  A cellular and regulatory map of the cholinergic nervous system of C. elegans , 2015, eLife.

[12]  Edward T. Bullmore,et al.  The Multilayer Connectome of Caenorhabditis elegans , 2016, PLoS Comput. Biol..

[13]  Padraig Gleeson,et al.  Geppetto: a reusable modular open platform for exploring neuroscience data and models , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  Josh Lerner,et al.  The Simple Economics of Open Source , 2000 .

[15]  Jesús A. Izaguirre,et al.  COMPUCELL, a multi-model framework for simulation of morphogenesis , 2004, Bioinform..

[16]  Nikolay Avgoustinov,et al.  Modelling in Mechanical Engineering and Mechatronics: Towards Autonomous Intelligent Software Models , 2007 .

[17]  Frederick Sachs,et al.  Maximum likelihood estimation of ion channel kinetics from macroscopic currents. , 2005, Biophysical journal.

[18]  Richard C. Gerkin,et al.  Unit testing, model validation, and biological simulation , 2015, F1000Research.

[19]  P. Holmes,et al.  Spikes alone do not behavior make: why neuroscience needs biomechanics , 2011, Current Opinion in Neurobiology.

[20]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[21]  Richard C Gerkin,et al.  Towards systematic, data-driven validation of a collaborative, multi-scale model of Caenorhabditis elegans , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  K. Strange From genes to integrative physiology: ion channel and transporter biology in Caenorhabditis elegans. , 2003, Physiological reviews.

[23]  Kai Blin,et al.  Ten Simple Rules for Taking Advantage of Git and GitHub , 2014, bioRxiv.

[24]  Robert C. Cannon,et al.  LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2 , 2014, Front. Neuroinform..

[25]  S. R. Wicks,et al.  Integration of mechanosensory stimuli in Caenorhabditis elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  Gerkin Richard,et al.  NeuroUnit: Validation Tests for Neuroscience Models , 2013 .

[27]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[28]  Peter Hunter,et al.  Integrating knowledge representation and quantitative modelling in physiology. , 2012, Biotechnology journal.

[29]  S. Larson,et al.  Three-dimensional simulation of the Caenorhabditis elegans body and muscle cells in liquid and gel environments for behavioural analysis , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[31]  Stephen D. Larson,et al.  OpenWorm: an open-science approach to modeling Caenorhabditis elegans , 2014, Front. Comput. Neurosci..

[32]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[33]  Masahiro Kuramochi,et al.  A Computational Model Based on Multi-Regional Calcium Imaging Represents the Spatio-Temporal Dynamics in a Caenorhabditis elegans Sensory Neuron , 2017, PloS one.

[34]  M. Chalfie,et al.  MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation , 2002, Nature.

[35]  L. Salkoff,et al.  Potassium channels in C. elegans. , 2005, WormBook : the online review of C. elegans biology.

[36]  S. R. Wicks,et al.  A Dynamic Network Simulation of the Nematode Tap Withdrawal Circuit: Predictions Concerning Synaptic Function Using Behavioral Criteria , 1996, The Journal of Neuroscience.

[37]  Kimberly Van Auken,et al.  WormBase: a comprehensive resource for nematode research , 2009, Nucleic Acids Res..

[38]  David Harel,et al.  A Grand Challenge: Full Reactive Modeling of a Multi-cellular Animal , 2003, HSCC.

[39]  O. Hobert,et al.  A cellular and regulatory map of the GABAergic nervous system of C. elegans , 2016, bioRxiv.

[40]  Eric T. Wang,et al.  Visualization of 3-Dimensional Vectors in a Dynamic Embryonic System—WormGUIDES , 2017 .

[41]  Richard C. Gerkin,et al.  Collaborative infrastructure for test-driven scientific model validation , 2014, ICSE Companion.

[42]  Yulin Fang,et al.  Understanding Sustained Participation in Open Source Software Projects , 2009, J. Manag. Inf. Syst..

[43]  Michael L. Hines,et al.  NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail , 2010, PLoS Comput. Biol..

[44]  Cori Bargmann Neurobiology of the Caenorhabditis elegans genome. , 1998, Science.

[45]  Bojun Chen,et al.  SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans , 2014, Nature Communications.

[46]  Thomas E. Portegys,et al.  Morphozoic, Cellular Automata with Nested Neighborhoods as a Metamorphic Representation of Morphogenesis , 2017 .

[47]  Tom Silver,et al.  Behavior Is Everything: Towards Representing Concepts with Sensorimotor Contingencies , 2018, AAAI.

[48]  Felix Schürmann,et al.  Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells , 2017, Front. Cell. Neurosci..

[49]  L. Bianchi,et al.  Heterologous expression of C. elegans ion channels in Xenopus oocytes. , 2006, WormBook : the online review of C. elegans biology.

[50]  S. Carroll Endless forms most beautiful : the new science of evo devo and the making of the animal kingdom , 2005 .

[51]  J E Sulston,et al.  Neuronal cell lineages in the nematode Caenorhabditis elegans. , 1983, Cold Spring Harbor symposia on quantitative biology.

[52]  J. Gjorgjieva,et al.  Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand? , 2014, Bioscience.

[53]  Jordan H. Boyle,et al.  Caenorhabditis elegans body wall muscles are simple actuators , 2008, Biosyst..

[54]  E. Mirzakhalili,et al.  A mathematical and computational model of the calcium dynamics in Caenorhabditis elegans ASH sensory neuron , 2017, bioRxiv.

[55]  M. Yuchi,et al.  Optimal Estimation of Ion-Channel Kinetics from Macroscopic Currents , 2012, PloS one.

[56]  Gopal P. Sarma,et al.  Integrative biological simulation praxis: Considerations from physics, philosophy, and data/model curation practices , 2017, Cellular logistics.

[57]  Stephen Larson,et al.  The OpenWorm Project: currently available resources and future plans , 2015, BMC Neuroscience.

[58]  Avelino Javer,et al.  Powerful and interpretable behavioural features for quantitative phenotyping of Caenorhabditis elegans , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[59]  Henry Markram,et al.  Channelpedia: An Integrative and Interactive Database for Ion Channels , 2011, Front. Neuroinform..

[60]  John Guckenheimer,et al.  An Improved Parameter Estimation Method for Hodgkin-Huxley Models , 1999, Journal of Computational Neuroscience.