Machine learning technique based extremely broadband small‐signal behavioral model for InP DHBTs

[1]  A. Bouallegue,et al.  Small-signal modeling of HBTs using a hybrid optimization/statistical technique , 1998 .

[2]  S. Bahl,et al.  An accurate, large signal, high frequency model for GaAs HBTs , 1996, GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium. 18th Annual Technical Digest 1996.

[3]  Lingling Sun,et al.  A Global Modeling Technique for InP HBT Based on Machine Learning Method , 2018, 2018 Asia-Pacific Microwave Conference (APMC).

[4]  Bumman Kim,et al.  Direct parameter extraction of SiGe HBTs for the VBIC bipolar compact model , 2005 .

[5]  Sonja R. Nedeljkovic,et al.  A Custom Iii-v Heterojunction Bipolar Transistor Model , 2009 .

[6]  Antonio Raffo,et al.  An Extensive Experimental Analysis of the Kink Effects in ${ S}_{22}$ and ${ h}_{21}$ for a GaN HEMT , 2014, IEEE Transactions on Microwave Theory and Techniques.

[7]  W. Deal,et al.  First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process , 2015, IEEE Electron Device Letters.

[8]  Antonio Raffo,et al.  Kink Effect in ${\rm S}_{22}$ for GaN and GaAs HEMTs , 2015, IEEE Microwave and Wireless Components Letters.

[9]  H. C. Poon,et al.  An integral charge control model of bipolar transistors , 1970, Bell Syst. Tech. J..

[10]  A. Konczykowska,et al.  Improved External Base Resistance Extraction for Submicrometer InP/InGaAs DHBT Models , 2011, IEEE Transactions on Electron Devices.

[11]  F.M. Ghannouchi,et al.  Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks , 2004, IEEE Transactions on Microwave Theory and Techniques.

[12]  Wen Wu,et al.  An Artificial Neural Network-Based Electrothermal Model for GaN HEMTs With Dynamic Trapping Effects Consideration , 2016, IEEE Transactions on Microwave Theory and Techniques.

[13]  H. Zirath,et al.  An empirical-table based FET model , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[14]  Michael Schroter,et al.  Staying current with HICUM , 2002 .

[15]  Jin Zhi,et al.  A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect , 2009 .

[16]  Wei Cheng,et al.  Extraction and verification of the small-signal model for InP DHBTs in the 0.2-325 GHz frequency range , 2018, IEICE Electron. Express.

[17]  Xiaochong Cao,et al.  Comparison of the new VBIC and conventional Gummel-Poon bipolar transistor models , 2000 .

[18]  Christian P. Robert,et al.  Bayesian computation for statistical models with intractable normalizing constants , 2008, 0804.3152.

[19]  P. Asbeck,et al.  Large-signal HBT model with improved collector transit time formulation for GaAs and InP technologies , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[20]  Wei Cheng,et al.  Measurement and modeling techniques for InP-based HBT devices to 220GHz , 2016, 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC).

[21]  Jianjun Xu,et al.  Global dynamic FET model for GaN transistors: DynaFET model validation and comparison to locally tuned models , 2014, 83rd ARFTG Microwave Measurement Conference.

[22]  D. Williams De-embedding and unterminating microwave fixtures with nonlinear least squares , 1990 .

[23]  W. Heinrich,et al.  InP-DHBT-on-BiCMOS Technology With $f_{T}/f_{\max}$ of 400/350 GHz for Heterogeneous Integrated Millimeter-Wave Sources , 2013, IEEE Transactions on Electron Devices.

[24]  King-Sun Fu,et al.  Pattern Recognition and Machine Learning , 2012 .

[25]  Wei Zhou,et al.  An Improved Small-Signal Model for SiGe HBT Under OFF-State, Derived From Distributed Network and Corresponding Model Parameter Extraction , 2015, IEEE Transactions on Microwave Theory and Techniques.

[26]  José Carlos Pedro,et al.  A new nonlinear behavioral modeling technique for RF power transistors based on Bayesian inference , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[27]  Shey-Shi Lu,et al.  The origin of the kink phenomenon of transistor scattering parameter S/sub 22/ , 2001 .

[28]  Wei Cheng,et al.  Fabrication and small signal modeling of 0.5 μm InGaAs/InP DHBT demonstrating FT/Fmax of 350/532 GHz , 2015 .

[29]  K. Cimino,et al.  300 GHz InP DHBT large signal model including current blocking effect and validated by Gilbert multiplier circuits , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[30]  Dominique Schreurs,et al.  On the small signal modeling of advanced microwave FETs: A comparative study , 2008 .

[31]  Wei Cheng,et al.  Broadband modeling for InP DHBT over 0.2 – 220 GHz , 2014, 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT).

[32]  F.M. Ghannouchi,et al.  Systematic and rigorous extraction method of HBT small-signal model parameters , 2006, IEEE Transactions on Microwave Theory and Techniques.

[33]  E. Paleczny,et al.  Multimode TRL. A new concept in microwave measurements: theory and experimental verification , 1998 .

[34]  Ren Kun,et al.  Frequency stability of InP HBT over 0.2 to 220 GHz , 2015 .

[35]  Z. Griffith,et al.  A 130 nm InP HBT integrated circuit technology for THz electronics , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[36]  M. Cacciola,et al.  Microwave Devices and Antennas Modelling by Support Vector Regression Machines , 2006, IEEE Transactions on Magnetics.

[37]  D. Smith,et al.  Compact Electro-thermal Modelling and Simulation of InP HBT Based on the Local Reference Concept , 2006, 2006 European Microwave Integrated Circuits Conference.