Multivariate Concavity Amplitude Index (MCAI) for characterizing Heschl's gyrus shape

[1]  Hyunjin Park,et al.  In-vivo data-driven parcellation of Heschl’s gyrus using structural connectivity , 2022, Scientific Reports.

[2]  Tsutomu Takahashi,et al.  Different Heschl’s Gyrus Duplication Patterns in Deficit and Non-deficit Subtypes of Schizophrenia , 2022, Frontiers in Psychiatry.

[3]  S. Wildermuth,et al.  Neuromorphological and Neurofunctional Correlates of ADHD and ADD in the Auditory Cortex of Adults , 2022, Frontiers in Neuroscience.

[4]  C. Stippich,et al.  Musicianship-Related Structural and Functional Cortical Features Are Preserved in Elderly Musicians , 2022, Frontiers in Aging Neuroscience.

[5]  Héloïse de Vareilles,et al.  Shape variability of the central sulcus in the developing brain: A longitudinal descriptive and predictive study in preterm infants , 2021, NeuroImage.

[6]  Tsutomu Takahashi,et al.  Altered Heschl's gyrus duplication pattern in first-episode schizophrenia , 2021, Schizophrenia Research.

[7]  D. Rivière,et al.  Automatic recognition of specific local cortical folding patterns , 2021, NeuroImage.

[8]  S. Reiterer,et al.  Examining Individual Differences in Language Learning: A Neurocognitive Model of Language Aptitude , 2021, Neurobiology of Language.

[9]  Josué Luiz Dalboni da Rocha,et al.  A Discriminative Characterization of Heschl’s Gyrus Morphology using Spectral Graph Features , 2021, bioRxiv.

[10]  J. Schmitt,et al.  The Heritability of Cortical Folding: Evidence from the Human Connectome Project. , 2020, Cerebral cortex.

[11]  Josué Luiz Dalboni da Rocha,et al.  TASH: Toolbox for the Automated Segmentation of Heschl’s gyrus , 2020, Scientific Reports.

[12]  Angela D. Friederici,et al.  The emergence of dyslexia in the developing brain , 2020, NeuroImage.

[13]  S. Reiterer,et al.  Auditory Cortex Morphology Predicts Language Learning Potential in Children and Teenagers , 2019, Front. Neurosci..

[14]  Essa Yacoub,et al.  Processing complexity increases in superficial layers of human primary auditory cortex , 2019, Scientific Reports.

[15]  Annemarie Seither-Preisler,et al.  Reduced cortical thickness in Heschl's gyrus as an in vivo marker for human primary auditory cortex , 2018, Human brain mapping.

[16]  Anders M. Dale,et al.  The genetic architecture of the human cerebral cortex , 2020, Science.

[17]  Matthew F. Glasser,et al.  Development and Evolution of Cerebral and Cerebellar Cortex , 2018, Brain, Behavior and Evolution.

[18]  Jean-Francois Mangin,et al.  The chaotic morphology of the left superior temporal sulcus is genetically constrained , 2018, NeuroImage.

[19]  C. Kroenke,et al.  How Forces Fold the Cerebral Cortex , 2018, The Journal of Neuroscience.

[20]  S. Reiterer,et al.  “When Music Speaks”: Auditory Cortex Morphology as a Neuroanatomical Marker of Language Aptitude and Musicality , 2017, Front. Psychol..

[21]  C. Stippich,et al.  Prevalence and function of Heschl’s gyrus morphotypes in musicians , 2017, Brain Structure and Function.

[22]  Annemarie Seither-Preisler,et al.  Neural Biomarkers for Dyslexia, ADHD, and ADD in the Auditory Cortex of Children , 2016, Front. Neurosci..

[23]  B. Mazoyer,et al.  Surface-Based Morphometry of Cortical Thickness and Surface Area Associated with Heschl's Gyri Duplications in 430 Healthy Volunteers , 2016, Front. Hum. Neurosci..

[24]  J.-F. Mangin,et al.  Longitudinal stability of the folding pattern of the anterior cingulate cortex during development , 2016, Developmental Cognitive Neuroscience.

[25]  Guillaume Auzias,et al.  Deep sulcal landmarks: Algorithmic and conceptual improvements in the definition and extraction of sulcal pits , 2015, NeuroImage.

[26]  F. Ramus,et al.  Planum temporale asymmetry in developmental dyslexia: Revisiting an old question , 2014, Human brain mapping.

[27]  Annemarie Seither-Preisler,et al.  Size and Synchronization of Auditory Cortex Promotes Musical, Literacy, and Attentional Skills in Children , 2014, The Journal of Neuroscience.

[28]  Xinyuan Zhang,et al.  Denoising MR Images Using Non-Local Means Filter with Combined Patch and Pixel Similarity , 2014, PloS one.

[29]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[30]  A. Heinecke,et al.  Increased volume and function of right auditory cortex as a marker for absolute pitch. , 2014, Cerebral cortex.

[31]  B. Mazoyer,et al.  Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers , 2013, Brain Structure and Function.

[32]  Katrin Amunts,et al.  Development of cortical folding during evolution and ontogeny , 2013, Trends in Neurosciences.

[33]  Jay N. Giedd,et al.  Differential Tangential Expansion as a Mechanism for Cortical Gyrification , 2013, Cerebral cortex.

[34]  G Auzias,et al.  Model-Driven Harmonic Parameterization of the Cortical Surface: HIP-HOP , 2013, IEEE Transactions on Medical Imaging.

[35]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[36]  John Ashburner,et al.  SPM: A history , 2012, NeuroImage.

[37]  Anatol C. Kreitzer,et al.  Plasticity in gray and white: neuroimaging changes in brain structure during learning , 2012, Nature Neuroscience.

[38]  Jean-Francois Mangin,et al.  The effect of handedness on the shape of the central sulcus , 2012, NeuroImage.

[39]  Julien Lefèvre,et al.  Model-Driven Harmonic Parameterization of the Cortical Surface: HIP-HOP , 2011, IEEE Transactions on Medical Imaging.

[40]  S. Scott,et al.  Born with an Ear for Dialects? Structural Plasticity in the Expert Phonetician Brain , 2011, The Journal of Neuroscience.

[41]  Pierrick Coupé,et al.  Author manuscript, published in "Journal of Magnetic Resonance Imaging 2010;31(1):192-203" DOI: 10.1002/jmri.22003 Adaptive Non-Local Means Denoising of MR Images with Spatially Varying Noise Levels , 2010 .

[42]  Arthur W. Toga,et al.  Cortical Shape Analysis in the Laplace-Beltrami Feature Space , 2009, MICCAI.

[43]  Rainer Goebel,et al.  Reduced volume of Heschl's gyrus in tinnitus , 2009, NeuroImage.

[44]  Eileen Luders,et al.  Mapping the relationship between cortical convolution and intelligence: effects of gender. , 2008, Cerebral cortex.

[45]  Vanessa Sluming,et al.  Heschl gyrus and its included primary auditory cortex: Structural MRI studies in healthy and diseased subjects , 2008, Journal of magnetic resonance imaging : JMRI.

[46]  Denis Rivière,et al.  Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations , 2008, NeuroImage.

[47]  Meritxell Bach Cuadra,et al.  A Surface-Based Approach to Quantify Local Cortical Gyrification , 2008, IEEE Transactions on Medical Imaging.

[48]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[49]  Jean-Francois Mangin,et al.  Automatic Inference of Sulcus Patterns Using 3D Moment Invariants , 2007, MICCAI.

[50]  Stephen Lawrie,et al.  Automated computation of the Gyrification Index in prefrontal lobes: Methods and comparison with manual implementation , 2006, NeuroImage.

[51]  Stanislas Dehaene,et al.  Brain structure predicts the learning of foreign speech sounds. , 2006, Cerebral cortex.

[52]  Jerry L Prince,et al.  Cross-sectional and longitudinal analyses of anatomical sulcal changes associated with aging. , 2005, Cerebral cortex.

[53]  Neil Roberts,et al.  Structural, Functional, and Perceptual Differences in Heschl's Gyrus and Musical Instrument Preference , 2005, Annals of the New York Academy of Sciences.

[54]  Eileen Luders,et al.  Gender differences in cortical complexity , 2004, Nature Neuroscience.

[55]  M. Scherg,et al.  Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians , 2002, Nature Neuroscience.

[56]  Jean-Francois Mangin,et al.  Automatic recognition of cortical sulci of the human brain using a congregation of neural networks , 2002, Medical Image Anal..

[57]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[58]  M. Eckert,et al.  Anatomical risk factors for phonological dyslexia. , 2001, Cerebral cortex.

[59]  C. Leonard,et al.  Normal variation in the frequency and location of human auditory cortex landmarks. Heschl's gyrus: where is it? , 1998, Cerebral cortex.

[60]  D. Weinberger,et al.  Genetic variability of human brain size and cortical gyral patterns. , 1997, Brain : a journal of neurology.

[61]  Alan C. Evans,et al.  Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. , 1996, Cerebral cortex.

[62]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[63]  F. Gilles,et al.  Left-right asymmetries of the temporal speech areas of the human fetus. , 1977, Archives of neurology.

[64]  F. Gilles,et al.  Gyral development of the human brain , 1977, Transactions of the American Neurological Association.

[65]  C. Economo,et al.  Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede , 1930 .

[66]  Hiroshi Murata,et al.  Development of a Novel Corneal Concavity Shape Parameter and Its Association with Glaucomatous Visual Field Progression. , 2019, Ophthalmology. Glaucoma.

[67]  Guillaume Auzias,et al.  Structural graph‐based morphometry: A multiscale searchlight framework based on sulcal pits , 2017, Medical Image Anal..

[68]  B. Mazoyer,et al.  Heschl’s gyrification pattern is related to speech-listening hemispheric lateralization: FMRI investigation in 281 healthy volunteers , 2014, Brain Structure and Function.

[69]  M. Scherg,et al.  Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference , 2005, Nature Neuroscience.

[70]  A. Schleicher,et al.  The human pattern of gyrification in the cerebral cortex , 2004, Anatomy and Embryology.