TwO Parameters Semi Empirical Model (TOPSEM): Galaxy Evolution and Bulge/Disk Dicothomy from Two-stage Halo Accretion

In recent years, increasing attention has been devoted to semi-empirical, data-driven models to tackle some aspects of the complex and still largely debated topic of galaxy formation and evolution. We here present a new semi-empirical model whose marking feature is simplicity: it relies on solely two assumptions, one initial condition and two free parameters. Galaxies are connected to evolving dark matter haloes through abundance matching between specific halo accretion rate (sHAR) and specific star formation rate (sSFR). Quenching is treated separately, in a fully empirical way, to marginalize over quiescent galaxies and test our assumption on the sSFR evolution without contaminations from passive objects. Our flexible and transparent model is able to reproduce the observed stellar mass functions up to z ∼ 5, giving support to our hypothesis of a monotonic relation between sHAR and sSFR. We then exploit the model to test a hypothesis on morphological evolution of galaxies. We attempt to explain the bulge/disk bimodality in terms of the two halo accretion modes: fast and slow accretion. Specifically, we speculate that bulge/spheroidal components might form during the early phase of fast halo growth, while disks form during the later phase of slow accretion. We find excellent agreement with both the observational bulge and elliptical mass functions.

[1]  A. Dekel,et al.  Wet Compaction to a Blue Nugget: a Critical Phase in Galaxy Evolution , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  L. Y. Aaron Yung,et al.  CEERS: Spatially Resolved UV and Mid-infrared Star Formation in Galaxies at 0.2 < z < 2.5: The Picture from the Hubble and James Webb Space Telescopes , 2023, The Astrophysical Journal.

[3]  R. Maiolino,et al.  The Fundamental Signature of Star Formation Quenching from AGN Feedback: A Critical Dependence of Quiescence on Supermassive Black Hole Mass, Not Accretion Rate , 2023, The Astrophysical Journal.

[4]  S. Leslie,et al.  Exploring the Intrinsic Scatter of the Star-Forming Galaxy Main Sequence at redshift 0.5 to 3.0 , 2023, Monthly Notices of the Royal Astronomical Society.

[5]  A. Robotham,et al.  Comparison of the stellar populations of bulges and discs using the MaNGA survey , 2022, Publications of the Astronomical Society of Australia.

[6]  R. Davé,et al.  Effects of Active Galactic Nucleus Feedback on Cold Gas Depletion and Quenching of Central Galaxies , 2022, The Astrophysical Journal.

[7]  M. Bernardi,et al.  Testing the key role of the stellar mass-halo mass relation in galaxy merger rates and morphologies via DECODE, a novel Discrete statistical sEmi-empiriCal mODEl , 2022, 2208.00014.

[8]  C. Conselice,et al.  Panic! at the Disks: First Rest-frame Optical Observations of Galaxy Structure at z > 3 with JWST in the SMACS 0723 Field , 2022, The Astrophysical Journal Letters.

[9]  C. Willmer,et al.  Properties of Host Galaxies of Submillimeter Sources as Revealed by JWST Early Release Observations in SMACS J0723.3–7327 , 2022, The Astrophysical Journal Letters.

[10]  M. Huertas-Company,et al.  Coincidence between morphology and star-formation activity through cosmic time: the impact of the bulge growth , 2022, 2203.15819.

[11]  D. Elbaz,et al.  The Main Sequence of star-forming galaxies across cosmic times , 2022, 2203.10487.

[12]  J. Mohr,et al.  Massive quiescent galaxies at z ∼ 3: A comparison of selection, stellar population, and structural properties with simulation predictions , 2022, Monthly Notices of the Royal Astronomical Society.

[13]  C. Baccigalupi,et al.  Growth of massive black hole seeds by migration of stellar and primordial black holes: gravitational waves and stochastic background , 2021, Journal of Cosmology and Astroparticle Physics.

[14]  L. Danese,et al.  Evolution of Galaxy Star Formation and Metallicity: Impact on Double Compact Object Mergers , 2020, 2012.02800.

[15]  V. Springel,et al.  Submillimetre galaxies in cosmological hydrodynamical simulations – an opportunity for constraining feedback models , 2020, 2007.01885.

[16]  D. Narayanan,et al.  Reproducing submillimetre galaxy number counts with cosmological hydrodynamic simulations , 2020, 2006.15156.

[17]  S. Borgani,et al.  The DIANOGA simulations of galaxy clusters: characterising star formation in protoclusters , 2020, Astronomy & Astrophysics.

[18]  L. Danese,et al.  New Analytic Solutions for Galaxy Evolution. II. Wind Recycling, Galactic Fountains, and Late-type Galaxies , 2020, The Astrophysical Journal.

[19]  M. Viel,et al.  scampy – A sub-halo clustering and abundance matching based python interface for painting galaxies on the dark matter halo/sub-halo hierarchy , 2020, 2002.07179.

[20]  L. Danese,et al.  Growth of Supermassive Black Hole Seeds in ETG Star-forming Progenitors: Multiple Merging of Stellar Compact Remnants via Gaseous Dynamical Friction and Gravitational-wave Emission , 2020, The Astrophysical Journal.

[21]  G. Kauffmann,et al.  L-GALAXIES 2020: Spatially resolved cold gas phases, star formation, and chemical enrichment in galactic discs , 2020, 2003.05944.

[22]  C. C. Chen,et al.  An ALMA survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS field: high-resolution dust continuum morphologies and the link between sub-millimetre galaxies and spheroid formation , 2019, Monthly Notices of the Royal Astronomical Society.

[23]  A. Fontana,et al.  Red and dead CANDELS: massive passive galaxies at the dawn of the Universe , 2019, Monthly Notices of the Royal Astronomical Society.

[24]  C. Baccigalupi,et al.  Merging Rates of Compact Binaries in Galaxies: Perspectives for Gravitational Wave Detections , 2019, Astrophysical Journal.

[25]  L. Danese,et al.  New Analytic Solutions for Galaxy Evolution: Gas, Stars, Metals, and Dust in Local ETGs and Their High-z Star-forming Progenitors , 2019, The Astrophysical Journal.

[26]  D. Narayanan,et al.  simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  U. Pennsylvania,et al.  A statistical semi-empirical model: satellite galaxies in groups and clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  A. Robotham,et al.  Shark: introducing an open source, free, and flexible semi-analytic model of galaxy formation , 2018, Monthly Notices of the Royal Astronomical Society.

[29]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  Italy,et al.  Precision Scaling Relations for Disk Galaxies in the Local Universe , 2018, 1804.06086.

[31]  A. Bressan,et al.  The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies , 2018, 1803.04734.

[32]  A. Cimatti,et al.  ALMA view of a massive spheroid progenitor: a compact rotating core of molecular gas in an AGN host at z = 2.226 , 2018, 1802.06083.

[33]  R. Bender,et al.  The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths , 2017, 1711.02111.

[34]  Annalisa Pillepich,et al.  First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies , 2017, 1707.03406.

[35]  N. Grogin,et al.  Analysis of the SFR - M* plane at z<3: single fitting versus multi-Gaussian decomposition , 2017, 1706.06154.

[36]  M. Hayden,et al.  The AMBRE project: chemical evolution models for the Milky Way thick and thin discs , 2017, 1706.02614.

[37]  S. White,et al.  EMERGE – an empirical model for the formation of galaxies since z ∼ 10 , 2017, 1705.05373.

[38]  S. Wuyts,et al.  Rotating Starburst Cores in Massive Galaxies at z = 2.5 , 2017, 1703.10197.

[39]  Annalisa Pillepich,et al.  Simulating galaxy formation with the IllustrisTNG model , 2017, 1703.02970.

[40]  M. Ouchi,et al.  Demonstrating a New Census of Infrared Galaxies with ALMA (DANCING-ALMA). I. FIR Size and Luminosity Relation at z = 0–6 Revealed with 1034 ALMA Sources , 2017, 1703.02138.

[41]  O. Fèvre,et al.  The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots , 2017, 1701.02734.

[42]  L. Danese,et al.  THE MAIN SEQUENCES OF STAR-FORMING GALAXIES AND ACTIVE GALACTIC NUCLEI AT HIGH REDSHIFT , 2016, 1610.05910.

[43]  A. Hopkins,et al.  Galaxy and Mass Assembly (GAMA): The stellar mass budget of galaxy spheroids and discs , 2016, 1608.05526.

[44]  S. Wuyts,et al.  BULGE-FORMING GALAXIES WITH AN EXTENDED ROTATING DISK AT z ∼ 2 , 2016, 1608.05412.

[45]  F. Shankar,et al.  Setting firmer constraints on the evolution of the most massive, central galaxies from their local abundances and ages , 2016, 1607.05732.

[46]  F. Fontanot,et al.  Variations of the stellar initial mass function in semi-analytical models: implications for the mass assembly and the chemical enrichment of galaxies in the GAEA model , 2016, 1606.01908.

[47]  V. A. Bruce,et al.  A deep ALMA image of the Hubble Ultra Deep Field , 2016, 1606.00227.

[48]  C. Maraston,et al.  The high mass end of the stellar mass function: dependence on stellar population models and agreement between fits to the light profile , 2016, 1604.01036.

[49]  F. Fontanot,et al.  Galaxy assembly, stellar feedback and metal enrichment: the view from the Gaea model , 2015, 1512.04531.

[50]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA) : the stellar mass budget by galaxy type. , 2015, 1512.02342.

[51]  Astronomy,et al.  The massive end of the luminosity and stellar mass functions and clustering from CMASS to SDSS: evidence for and against passive evolution , 2015, 1510.07702.

[52]  F. Fraternali,et al.  Accretion, radial flows and abundance gradients in spiral galaxies , 2015, 1510.04289.

[53]  Perth,et al.  A unified multiwavelength model of galaxy formation , 2015, 1509.08473.

[54]  S. More,et al.  Strong bimodality in the host halo mass of central galaxies from galaxy–galaxy lensing , 2015, 1509.06762.

[55]  F. Fontanot,et al.  On the dependence of galaxy morphologies on galaxy mergers , 2015, 1507.04748.

[56]  Andrew King,et al.  Powerful Outflows and Feedback from Active Galactic Nuclei , 2015, 1503.05206.

[57]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[58]  Guillermo Barro,et al.  Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets , 2014, 1412.4783.

[59]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[60]  O. Fèvre,et al.  Evolution of the specific star formation rate function at z< 1.4 Dissecting the mass-SFR plane in COSMOS and GOODS , 2014, 1410.4875.

[61]  D. Elbaz,et al.  The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day , 2014, 1409.5433.

[62]  A. King,et al.  The Supermassive Black Hole—Galaxy Connection , 2014 .

[63]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[64]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[65]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[66]  F. Fontanot,et al.  Environmental dependence of bulge-dominated galaxy sizes in hierarchical models of galaxy formation. Comparison with the local Universe , 2014, 1401.2460.

[67]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[68]  A. Dekel,et al.  Wet Disc Contraction to Galactic Blue Nuggets and Quenching to Red Nuggets , 2013, 1310.1074.

[69]  Heidelberg,et al.  The hierarchical origins of observed galaxy morphology , 2013, 1305.7163.

[70]  V. Vikram,et al.  The massive end of the luminosity and stellar mass functions: Dependence on the fit to the light profile , 2013, 1304.7778.

[71]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[72]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[73]  A. C. Fabian,et al.  Observational Evidence of AGN Feedback , 2012, 1204.4114.

[74]  Daniel Thomas,et al.  Chemical element ratios of SDSS early-type galaxies , 2011, 1112.0322.

[75]  Rachel Mandelbaum,et al.  Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy–galaxy lensing , 2011, 1110.4107.

[76]  Joel R. Primack,et al.  Galaxy Properties from the Ultra-violet to the Far-Infrared: Lambda-CDM models confront observations , 2011, 1104.0669.

[77]  K. Schawinski,et al.  Environment and self-regulation in galaxy formation , 2009, 0912.0259.

[78]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[79]  Yago Ascasibar,et al.  The dynamical structure of dark matter haloes , 2008, 0802.4348.

[80]  F. Fontanot,et al.  Reproducing the assembly of massive galaxies within the hierarchical cosmogony , 2007, 0709.1804.

[81]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[82]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[83]  H. Mo,et al.  Galaxy formation in pre-processed dark haloes , 2003, astro-ph/0311459.

[84]  A. Klypin,et al.  Density Profiles of ΛCDM Clusters , 2003, astro-ph/0311062.

[85]  A. King,et al.  Black Holes, Galaxy Formation, and the MBH-σ Relation , 2003, astro-ph/0308342.

[86]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[87]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[88]  Y. Jing,et al.  The growth and structure of dark matter haloes , 2002, astro-ph/0204108.

[89]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.